Advertisement

Microbial Ecology

, Volume 76, Issue 1, pp 102–112 | Cite as

Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid

  • Tancredo Augusto Feitosa de Souza
  • Leonaldo Alves de Andrade
  • Helena Freitas
  • Aline da Silva Sandim
Soil Microbiology
  • 369 Downloads

Abstract

Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed) and native (I unaltered) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered. For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

Keywords

Biological invasion Arbuscular mychorrizal fungi Brazilian seasonal tropical dry forest Soil available phosphorus Glomeromycota Cryptostegia madagascariensis Prosopis juliflora Parkinsonia aculeata Sesbania virgata 

Notes

Acknowledgements

Special thanks to Joana Costa and Susana Rodriguez-Echeverría for the valuable discussions and checking of English grammar. The authors also thank the two anonymous reviewers for the helpful comments, which greatly improved a previous version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2017_999_MOESM1_ESM.docx (37 kb)
Table S1 (DOCX 37 kb)

References

  1. 1.
    Kardol P, Veen GF, Teste FP, Perring MP (2015) Peeking into the black box: a trait-based approach to predicting plant-soil feedback. New Phytol. 206:1–4CrossRefPubMedGoogle Scholar
  2. 2.
    Carvalho LM, Antunes PM, Martins-Loução MA, Klironomos JN (2010) Disturbance influences the outcome on plant-soil biota interactions in the invasive Acacia longifolia and in native species. Oikos 119:1172–1180CrossRefGoogle Scholar
  3. 3.
    Johnstone IM (1986) Plant invasion windows: a time-based classification of invasion potential. Brol Rev 61:369–394Google Scholar
  4. 4.
    Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–2989CrossRefGoogle Scholar
  5. 5.
    Andrade LA, Fabricante JR, Oliveira FX (2009) Invasão biológica por Prosopis juliflora (Sw.) DC.: impactos sobre a diversidade e a estrutura do componente arbustivo-arbóreo da caatinga no estado do Rio Grande do Norte, Brasil. Acta Botanica Brasílica 23:935–943CrossRefGoogle Scholar
  6. 6.
    Silva JL, Barreto RW, Pereita OL (2008) Pseudocercospora cryptostegiae-madagascariensis sp. nov. on Cryptostegia madagascariensis, an exotic vine involved in major biologial invasion in Northeast Brazil. Mycopathologia 166:87–91CrossRefPubMedGoogle Scholar
  7. 7.
    Sousa VC, Andrade LA, Bezerra FTC, Fabricante JR, Feitosa RC (2011) Avaliação populacional de Sesbania virgata (Cav.) Pers. (Fabaceae Lindl.) nas margens do rio Paraíba. Agrária (Recife Online) 6:314–320Google Scholar
  8. 8.
    Soumare A, Manga A, Fall S, Hafidi M, Ndoye I (2015) Effects of Eucaplyptus camaldulensis amendment on soil chemical properties, enzymatic activity, Acacia species growth and roots symbioses. Agrofor. Syst. 89:97–106CrossRefGoogle Scholar
  9. 9.
    Ayanu Y, Jintsch A, Müller-Mahn D, Rettberg S, RomanKiewicz C, Koellner T (2015) Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services? Reg. Environ. Chang. 15:155–167CrossRefGoogle Scholar
  10. 10.
    Day NJ, Antunes PM, Dunfield KE (2015) Changes in arbuscular mycorrhizal fungal communities during invasion by an exotic invasive plant. Acta Oecologia 67:66–74CrossRefGoogle Scholar
  11. 11.
    Bunn RA, Ramsey PW, Lekberg Y (2015) Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J. Ecol. 103:1547–1556CrossRefGoogle Scholar
  12. 12.
    Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc Royal Soc London B 271:35–43CrossRefGoogle Scholar
  13. 13.
    Shah MA, Callaway RM, Shah T, Houseman GR, Pal RW, Xiao S, Luo W, Rosche C, Reshi ZA, Khasa DP, Chen S (2014) Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. New Phytol. 202:1286–1296CrossRefPubMedGoogle Scholar
  14. 14.
    Shah MA, Beaulieu M-E, Reshi ZA, Qureshi S, Khasa DP (2015) A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecol. Process. doi: 10.1186/s13717-015-0034-0
  15. 15.
    Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One 5:e12380CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Abbott KC, Karst J, Biederman LA, Borrett SR, Hastings A, Walsh V, Bever JD (2015) Spatial heterogeneity in soil microbes alters outcomes of plant competition. PLoS One 10:e0125788CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mehrabi Z, Bell T, Lewis OT (2015) Plant-soil feedbacks from 30-year family-specific soil cultures: phylogeny, soil chemistry and plant life stage. Ecology and Evolution 5:2333–2339CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van der Putten WH, Kowalchuk GA, Brinkman EP, Doodeman GTA, van der Kaaij RM, Kamp AFD, Menting FBJ, Veenendaal EM (2007) Soil feedbacks of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology 88:978–988CrossRefPubMedGoogle Scholar
  20. 20.
    Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions-the role of mutualisms. Biol. Rev. 75:65–93CrossRefPubMedGoogle Scholar
  21. 21.
    Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90CrossRefGoogle Scholar
  22. 22.
    Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol. 170:445–457CrossRefPubMedGoogle Scholar
  23. 23.
    Blumenthal D (2005) Interrelated causes of plant invasion. Science 310:243–244CrossRefPubMedGoogle Scholar
  24. 24.
    Kulmatiski A, Kardol P (2008) Getting plant-soil feedbacks out of the greenhouse: experimental and conceptual approaches. In: Lüttige U et al. (eds) Progress in botany 69. Springer, Berlin, pp. 449–472CrossRefGoogle Scholar
  25. 25.
    Alves JJA, Araújo MA, Nascimento SS (2009) Degradação da Caatinga: uma investigação ecofisiográfica. Revista Caatinga, Mossoró 22:126–135Google Scholar
  26. 26.
    WRB (IUSS Working Group) (2006) World reference base for soil. World Soil Resources Reports, 103. FAO, RomeGoogle Scholar
  27. 27.
    Mello CMA, Silva IR, Pontes JS, Goto BT, Silva GA, Maia LC (2012) Diversidade de fungos micorrízicos arbusculares em área de Caatinga, PE, Brasil. Acta Botanica Brasilica 26:938–943CrossRefGoogle Scholar
  28. 28.
    Fortin M, Dale MR (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Caifa AN, Martins FR (2007) Taxonomic identification, sampling methods, and minimum size of the tree sampled: implications and perspectives for studies in the Brazilian Atlantic Rainforest. Functional Ecosystems and Communities 1:95–104Google Scholar
  30. 30.
    Durigan G (2009) Estrutura e diversidade de comunidades florestais. In: Martins SV (ed) Ecologia de florestas tropicais do Brasil. Editora UFV, Vicoça, pp. 185–215Google Scholar
  31. 31.
    Silva IRS, Mello CMA, Ferreira Neto RA, Silva DKA, Melo AL, Oehl F, Maia LO (2014) Diversity of arbuscular mycorrhizal fungi along an environmental gradient in the Brazilian semi-arid. Appl. Soil Ecol. 84:166–175CrossRefGoogle Scholar
  32. 32.
    Black CA (1965) Methods of soil analysis, part 2. In: Black CA (ed) Agronomy monograph no. 9. American Society of Agronomy, Madison, pp. 771–1572Google Scholar
  33. 33.
    Okalebo JR, Gathua KW, Woomer PL (1993) Laboratory methods of plant and soil analysis: A working manual. Soil Science Society East Africa technical publication 1:22–29Google Scholar
  34. 34.
    Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorous in soils by extraction with sodium bicarbonate. US Department of Agriculture, Washigton DC, USAGoogle Scholar
  35. 35.
    Hoagland DR, Arnon DI (1939) The water culture method for growing plant without soil. Calif Agric Exp Stn Circ 347:1–32Google Scholar
  36. 36.
    Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1:43–66Google Scholar
  37. 37.
    Jenkins WR (1964) A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692Google Scholar
  38. 38.
    Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawari H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol. Res. 111:137–153CrossRefPubMedGoogle Scholar
  39. 39.
    Schenck NC, Perez Y (1987) Manual for the identification of VA mycorrhizal fungi, Second edn. International Culture Collection of VA Mycorrhizal Fungi (INVAM), University of Florida, GainesvilleGoogle Scholar
  40. 40.
    Oehl F, Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360Google Scholar
  41. 41.
    Goto BT, Silva GA, Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132CrossRefGoogle Scholar
  42. 42.
    Sieverding E, Silva GA, Berndt R, Oehl F (2014) Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon 129:373–386CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Gui LD, Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261:257–263CrossRefGoogle Scholar
  44. 44.
    Habte M, Osorio NW (2001) Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. University of Hawaii, HonoluluGoogle Scholar
  45. 45.
    Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158–160CrossRefGoogle Scholar
  46. 46.
    Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500CrossRefGoogle Scholar
  47. 47.
    Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91CrossRefPubMedGoogle Scholar
  48. 48.
    Jackson ML (1973) Estimation of phosphorous content. Soil chemical analysis. Printer Hall Inc., New DelhiGoogle Scholar
  49. 49.
    Armas C, Ordiales R, Pugnaire F (2005) Measuring plant interactions: a new comparative index. Ecology 85:2682–2886CrossRefGoogle Scholar
  50. 50.
    Zar JH (1984) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar
  51. 51.
    Kovach WL (2007) MVSP—a multivariate statistical package for Windows, ver. 3.1. Kovach Computing Services, PentraethGoogle Scholar
  52. 52.
    Zubek S, Majewska ML, Błaszkowski J, Stefanowicz AM, Nobis M, Kapusta P (2016) Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biol. Fertil. Soils 52:879–893CrossRefGoogle Scholar
  53. 53.
    Shah MA, Reshi ZA, Khasa D (2009) Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot. Rev. 75:397–417CrossRefGoogle Scholar
  54. 54.
    Callaway RM, Cipolini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: invasive plant suppresses fungal mutualists in American but not in its native Europe. Ecology 89:1043–1055CrossRefPubMedGoogle Scholar
  55. 55.
    Tanner RA, Gange AC (2013) The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecol. 214:423–432CrossRefGoogle Scholar
  56. 56.
    Souza TAF, Rodriguez-Echeverría S, Andrade LA, Freitas H (2016) Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil? Acta Botanica Brasilica 30. doi: 10.1590/0102-33062015abb0190
  57. 57.
    Zubek S, Błaszkowski J, Seidler-Łożykowska K, Bąba W, Mleczko P (2013) Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Sci Pol-Hortoru 12:127–114Google Scholar
  58. 58.
    Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:e140CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yuan Y, Tang J, Leng D, Hu S, Yong JWH, Chen X (2014) An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon. PLoS One 9:e97163CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90CrossRefGoogle Scholar
  61. 61.
    Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90:399–407CrossRefPubMedGoogle Scholar
  62. 62.
    Majewska ML, Błaszkowski J, Nobis M, Role K, Nobis A, Lakomiec D, Czachura P, Zubek S (2015) Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis 65:101–115CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Follstad Shah JJ, Harner MJ, Tibbets TM (2010) Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems 13:46–61CrossRefGoogle Scholar
  64. 64.
    Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol. 178:177–188CrossRefPubMedGoogle Scholar
  65. 65.
    Carneiro MAC, Ferreira DA, Souza ED, Paulino HB, Saggin Junior OJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture. Pesquisa Agropecuária Brasileira, Brasília 50:313–321CrossRefGoogle Scholar
  66. 66.
    Rodríguez-Echeverría S, Crisóstomo JA, Nabais C, Freitas H (2009) Belowground mutualists and the invasive ability of Acacia longifólia in coastal dunes of Portugal. Biol. Invasions 11:651–661CrossRefGoogle Scholar
  67. 67.
    Grümberg BC, Urcelay C, Shroider MA, Vargas-Gil S, Luna CM (2015) The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol. Fertil. Soils 51:1–10CrossRefGoogle Scholar
  68. 68.
    Ortiz N, Armada E, Duque E, Roldán A, Azcón A (2015) Contribution of arbuscular mycorrhizal fungi and/or bactéria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthnous strains. J. Plant Physiol. 174:87–96CrossRefPubMedGoogle Scholar
  69. 69.
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press and Elsevier, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tancredo Augusto Feitosa de Souza
    • 1
  • Leonaldo Alves de Andrade
    • 1
  • Helena Freitas
    • 2
  • Aline da Silva Sandim
    • 3
  1. 1.Agrarian Science Center, Department of Soils and Rural EngineeringFederal University of ParaíbaAreiaBrazil
  2. 2.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.College of Agricultural Sciences, Department of Soil and Environmental ResourcesUniversity of São PauloSao PauloBrazil

Personalised recommendations