Microbial Ecology

, Volume 74, Issue 4, pp 969–978 | Cite as

Shared Epizoic Taxa and Differences in Diatom Community Structure Between Green Turtles (Chelonia mydas) from Distant Habitats

  • Roksana Majewska
  • Bart Van de Vijver
  • Ali Nasrolahi
  • Maryam Ehsanpour
  • Majid Afkhami
  • Federico Bolaños
  • Franco Iamunno
  • Mario Santoro
  • Mario De Stefano
Host Microbe Interactions

Abstract

The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.

Keywords

Biofilm Epizoic diatom Marine epibiosis Persian Gulf Sea turtle Tortuguero 

Notes

Acknowledgments

The authors wish to thank Nathan J. Robinson, Thomas A. Frankovich, Rachel Welicky, Jeanette Wyneken, Justin Perrault, and Peter Convey for their valuable suggestions and comments on earlier drafts of this paper. This work was done with the partial financial support from the University of Campania “Luigi Vanvitelli” (Italy).

Supplementary material

248_2017_987_MOESM1_ESM.docx (15 kb)
Supplementary Table S1 (DOCX 15 kb).

References

  1. 1.
    Blindow I (1987) The composition and density of epiphyton on several species of submerged macrophytes—the neutral substrate hypothesis tested. Aquat Bot 29:157–168CrossRefGoogle Scholar
  2. 2.
    D’Alelio D, Cante MT, Russo GF, Totti C, De Stefano M (2010) Epizoic diatoms on gastropod shells. When substrate complexity selects for microcommunity complexity. In: Seckbach J, Dubinsky Z (eds) All flesh is grass: plant-animal interrelationships. Springer, Dordrecht, pp. 349–366Google Scholar
  3. 3.
    Buckland-Nicks J, Chisholm SA, Gibson G (2013) The living community inside the common periwinkle, Littorina littorea. Can J Zool 91:293–301CrossRefGoogle Scholar
  4. 4.
    Costa MMDS, Pereira SMB, De Arruda PC, Eskinazi Leça E (2014) Quantitative variation of epiphytic diatoms in Galaxaura rugosa (Nemaliales: Rhodophyta). Mar Biodivers Rec 7. doi: 10.1017/S1755267214000529
  5. 5.
    Mabrouk L, Hamza A, Brahim MB, Bradai M-N (2011) Temporal and depth distribution of microepiphytes on Posidonia oceanica (L.) Delile leaves in a meadow off Tunisia. Mar Ecol 32:148–161CrossRefGoogle Scholar
  6. 6.
    Majewska R, Convey P, De Stefano M (2016) Summer epiphytic diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica)—a synthesis and final conclusions. PLoS One 11:e0153254CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Majewska R, Gambi MC, Totti CM, De Stefano M (2013) Epiphytic diatom communities of Terra Nova Bay, Ross Sea, Antarctica: structural analysis and relations to algal host. Ant Sci 25:501–513CrossRefGoogle Scholar
  8. 8.
    Majewska R, Gambi MC, Totti CM, Pennesi C, De Stefano M (2013) Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 36:73–86CrossRefGoogle Scholar
  9. 9.
    Majewska R, Zgrundo A, Lemke P, De Stefano M (2012) Benthic diatoms of the Vistula River estuary (Northern Poland): seasonality, substrata preferences, and the influence of water chemistry: benthic diatoms of the Vistula estuary. Phycol Res 60:1–19CrossRefGoogle Scholar
  10. 10.
    Mutinová PT, Neustupa J, Bevilacqua S, Terlizzi A (2016) Host specificity of epiphytic diatom (Bacillariophyceae) and desmid (Desmidiales) communities. Aquat Ecol 50:697–709CrossRefGoogle Scholar
  11. 11.
    Thomas DP, Jiang J (1986) Epiphytic diatoms of the inshore marine area near Davis Station. Hydrobiologia 140:193–198CrossRefGoogle Scholar
  12. 12.
    Totti C, Poulin M, Romagnoli T, Perrone C, Pennesi C, De Stefano M (2009) Epiphytic diatom communities on intertidal seaweeds from Iceland. Polar Biol 32:1681–1691CrossRefGoogle Scholar
  13. 13.
    Holmes RW, Nagasawa S, Takano H (1993) The morphology and geographic distribution of epidermal diatoms of the Dall’s porpoise (Phocoenoides dalli True) in the Northern Pacific Ocean. Bull Nat Sci Mus Ser B, Botany 19:1–18Google Scholar
  14. 14.
    Holmes RW (1985) The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two new genera, Bennettella and Epipellis. Brit Phycol J 20:43–57CrossRefGoogle Scholar
  15. 15.
    Nemoto T (1956) On the diatoms of the skin film of whales in the Northern Pacific. Sci. Rep. Whales. Res. Inst., Tokyo 11:99–132Google Scholar
  16. 16.
    Eminson D, Moss B (1980) The composition and ecology of periphyton communities in freshwaters. Brit Phycol J 15:429–446CrossRefGoogle Scholar
  17. 17.
    Majewska R, De Stefano M (2014) Epiphytic diatom communities on Phyllophora antarctica from the Ross Sea. Ant Sci 27:44–56CrossRefGoogle Scholar
  18. 18.
    Majewska R, Kuklinski P, Balazy P, Yokoya NS, Paternostro Martins A, De Stefano M (2015a) A comparison of epiphytic diatom communities on Plocamium cartilagineum (Plocamiales, Florideophyceae) from two Antarctic areas. Polar Biol 38:189–205CrossRefGoogle Scholar
  19. 19.
    Amemiya I (1916) [The propagation of diatoms on the skin of whales.] (In Japanese). Rep Jap Soc Sci Fish 1:378–379Google Scholar
  20. 20.
    Bennett AG (1920) On the occurrence of diatoms on the skin of whales. Proc Roy Soc London. Ser B, Containing Papers of a Biological Character 91:352–357Google Scholar
  21. 21.
    Frankovich TA, Ashworth MP, Sullivan MJ, Veselá J, Stacy NI (2016) Medlinella amphoroidea gen. et sp. nov. (Bacillariophyta) from the neck skin of loggerhead sea turtles (Caretta caretta). Phytotaxa 272:101–114CrossRefGoogle Scholar
  22. 22.
    Frankovich TA, Sullivan MJ, Stacy NI (2015) Tursiocola denysii (Bacillariophyta) from the neck skin of loggerhead sea turtles (Caretta caretta). Phytotaxa 234:227–236CrossRefGoogle Scholar
  23. 23.
    Majewska R, Kociolek JP, Thomas EW, De Stefano M, Santoro M, Bolanos F, Van de Vijver B (2015b) Chelonicola and Poulinea, two new gomphonemoid diatom genera (Bacillariophyta) living on marine turtles from Costa Rica. Phytotaxa 233:236–250CrossRefGoogle Scholar
  24. 24.
    Majewska R, Santoro M, Bolaños F, Chaves G, De Stefano M (2015c) Diatoms and other epibionts associated with olive ridley (Lepidochelys olivacea) sea turtles from the Pacific coast of Costa Rica. PLoS One 10:e0130351CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Robinson NJ, Majewska R, Lazo-Wasem EA, Nel R, Paladino FV, Rojas L, Zardus JD, Pinou T (2016) Epibiotic diatoms are universally present on all sea turtle species. PLoS One 11:e0157011CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Robinson NJ, Lazo-Wasem EA, Paladino FV, Zardus JD, Pinou T (2016) Assortative epibiosis of leatherback, olive ridley and green sea turtles in the Eastern Tropical Pacific. J. Mar. Biol. Assoc. UK, pp. 1–8. doi: 10.1017/S0025315416000734
  27. 27.
    World Medical Association (2013) World Medical Association Declaration of Helsinki, ethical principles for medical research involving human subjects. JAMA 30:2191–2194Google Scholar
  28. 28.
    van der Werff A (1955) A new method of concentrating and cleaning diatoms and other organisms. Verh Int Verein Theor Angew Limnol 2:276–277Google Scholar
  29. 29.
    Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  30. 30.
    Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol. Ecol. 16:4886–4907CrossRefPubMedGoogle Scholar
  31. 31.
    Putman NF, Naro-Maciel E (2013) Finding the “lost years” in green turtles: insight from ocean circulation models and genetic analysis. Proc R Soc B 280:20131468CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dutton PH, Jensen MP, Frey A, La Casella E, Balazs GH, Zárate P, et al (2014) Population structure and phylogeography reveal pathways of colonization by a migratory marine reptile (Chelonia mydas) in the central and eastern Pacific. Ecol Evol 4:4317–4331PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bourjea J, Mortimer JA, Garnier J, Okemwa G, Godley BJ, Hughes G, et al (2015) Population structure enhances perspectives on regional management of the western Indian Ocean green turtle. Conser Gen 16:1069–1083CrossRefGoogle Scholar
  34. 34.
    Carr AF (1967) So excellent a fishe: a natural history of sea turtles. Scribner, New YorkGoogle Scholar
  35. 35.
    Bowen BW, Meylan AB, Ross JP, Limpus CJ, Balazs GH, Avise JC (1992) Global population structure and natural history of the green turtle (Chelonia mydas) in terms of matriarchal phylogeny. Evolution 46:865–881PubMedGoogle Scholar
  36. 36.
    Carr AF (1975) The Ascension Island green turtle nesting colony. Copeia 1975:547–555CrossRefGoogle Scholar
  37. 37.
    Karl SA, Bowen BW, Avise JC (1995) Hybridization among the ancient mariners: identification and characterization of marine turtle hybrids with molecular genetic assays. J Hered 86:262–268CrossRefPubMedGoogle Scholar
  38. 38.
    Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW (1996) Phylogeography and population structure of the green turtle (Chelonia mydas) in the Atlantic Ocean and Mediterranean Sea: a mitochondrial DNA control region sequence assessment. Mol Ecol 5:473–484CrossRefPubMedGoogle Scholar
  39. 39.
    Ahmad F, Sultan SAR (1991) Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz. Atmosphere-Ocean 29:54–61CrossRefGoogle Scholar
  40. 40.
    Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F, Baldwin R, Bishop J, et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38CrossRefPubMedGoogle Scholar
  41. 41.
    Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Prog Ser 244:285–297CrossRefGoogle Scholar
  42. 42.
    Plotkin PT (2010) Nomadic behaviour of the highly migratory olive ridley sea turtle Lepidochelys olivacea in the eastern tropical Pacific Ocean. Endanger Species Res 13:33–40CrossRefGoogle Scholar
  43. 43.
    Jones TT, Seminoff JA (2015) Feeding biology. Advances from field-based observations, physiological studies, and molecular techniques. In: Wyneken J, Lohmann KJ, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp. 211–247Google Scholar
  44. 44.
    Cooksey KE (1992) Bacterial and algal interactions in biofilms. Sci Technol 223:163–173Google Scholar
  45. 45.
    Wigglesworth-Cooksey B, Cooksey KE (1992) Can diatoms sense surfaces?: state of our knowledge. Biofouling: J Bioadhesion Biofilm Res 5:227–238CrossRefGoogle Scholar
  46. 46.
    Hunken M, Harder J, Kirst GO (2008) Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol 10:519–526CrossRefPubMedGoogle Scholar
  47. 47.
    Ashoworth MP, Morris JJ (2016) Axenic microalgal cultures overlook the complexity of the phycosphere marketplace. Pers Phycol 3:107–111Google Scholar
  48. 48.
    Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277CrossRefGoogle Scholar
  49. 49.
    Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Roksana Majewska
    • 1
    • 2
    • 3
  • Bart Van de Vijver
    • 4
    • 5
  • Ali Nasrolahi
    • 6
  • Maryam Ehsanpour
    • 6
  • Majid Afkhami
    • 7
  • Federico Bolaños
    • 8
  • Franco Iamunno
    • 9
  • Mario Santoro
    • 10
  • Mario De Stefano
    • 3
  1. 1.Unit for Environmental Sciences and Management, School of Biological SciencesNorth-West UniversityPotchefstroomSouth Africa
  2. 2.South African Institute for Aquatic Biodiversity (SAIAB)GrahamstownSouth Africa
  3. 3.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesUniversity of Campania “Luigi Vanvitelli”CasertaItaly
  4. 4.Department of Bryophyta & ThallophytaBotanic Garden MeiseMeiseBelgium
  5. 5.Department of Biology, ECOBEUniversity of AntwerpWilrijkBelgium
  6. 6.Department of Aquatic Biotechnology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
  7. 7.Young Researchers and Elite Club, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
  8. 8.Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
  9. 9.Stazione Zoologica Anton DohrnNaplesItaly
  10. 10.Istituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly

Personalised recommendations