Microbial Ecology

, Volume 74, Issue 3, pp 585–598 | Cite as

Spatio-Temporal Variations of Marine Biofilm Communities Colonizing Artificial Substrata Including Antifouling Coatings in Contrasted French Coastal Environments

  • Jean-François Briand
  • Aude Barani
  • Cédric Garnier
  • Karine Réhel
  • Félix Urvois
  • Christophe LePoupon
  • Agnès Bouchez
  • Didier Debroas
  • Christine Bressy
Environmental Microbiology


Surface colonization in seawater first corresponds to the selection of specific microbial biofilm communities. By coupling flow cytometry, microscopy and high throughput sequencing (HTS, 454 pyrosequencing) with artificial surfaces and environmental analyses, we intend to identify the contribution of biofilm community drivers at two contrasted French sites, one temperate and eutrophic (Lorient, Atlantic coast) and the other at a mesotrophic but highly contaminated bay (Toulon, North-Western Mediterranean Sea). Microbial communities were shaped by high temperatures, salinity and lead at Toulon by but nutrients and DOC at Lorient. Coatings including pyrithione exhibited a significant decrease of their microbial densities except for nanoeukaryotes. Clustering of communities was mainly based on the surface type and secondly the site, whereas seasons appeared of less importance. The in-depth HTS revealed that γ- and α-proteobacteria, but also Bacteroidetes, dominated highly diversified bacterial communities with a relative low β-diversity. Sensitivity to biocides released by the tested antifouling coatings could be noticed at different taxonomic levels: the percentage of Bacteroidetes overall decreased with the presence of pyrithione, whereas the α/γ-proteobacteria ratio decreased at Toulon when increased at Lorient. Small diatom cells (Amphora and Navicula spp.) dominated on all surfaces, whereas site-specific sub-dominant taxa appeared clearly more sensitive to biocides. This overall approach exhibited the critical significance of surface characteristics in biofilm community shaping.


Marine biofilm Biofouling Environmental factors High throughput sequencing Flow cytometry Microbial ecotoxicology 



We thank S. Lafond for her help in the paint formulation, surface painting and contact angle measurements. We also thank Dr. G. Gregori (Université d’Aix-Marseille, MIO) for his help with the FCM analysis. This work was granted by the French EC2CO program ANTECOL.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they no conflict of interest.

Supplementary material

248_2017_966_Fig7_ESM.gif (50 kb)
Suppl Figure S1

(GIF 50 kb)

248_2017_966_MOESM1_ESM.tif (3.3 mb)
High resolution image (TIFF 3355 kb)
248_2017_966_MOESM2_ESM.docx (17 kb)
Suppl Table S2 (DOCX 16 kb)
248_2017_966_MOESM3_ESM.docx (15 kb)
Suppl Table S3 (DOCX 15 kb)
248_2017_966_MOESM4_ESM.docx (248 kb)
Suppl Figure S4 (DOCX 248 kb)
248_2017_966_MOESM5_ESM.docx (18 kb)
Suppl Table S5 (DOCX 18 kb)
248_2017_966_MOESM6_ESM.docx (16 kb)
Suppl Table S6 (DOCX 16 kb)
248_2017_966_MOESM7_ESM.docx (220 kb)
Suppl Figure S7 (DOCX 220 kb)
248_2017_966_MOESM8_ESM.docx (287 kb)
Suppl Figure S8 (DOCX 287 kb)
248_2017_966_MOESM9_ESM.docx (16 kb)
Suppl Table S9 (DOCX 15 kb)
248_2017_966_MOESM10_ESM.docx (16 kb)
Suppl Table S10 (DOCX 15 kb)
248_2017_966_MOESM11_ESM.docx (136 kb)
Suppl Figure S11 (DOCX 136 kb)
248_2017_966_MOESM12_ESM.docx (17 kb)
Suppl Table S12 (DOCX 17 kb)
248_2017_966_MOESM13_ESM.docx (74 kb)
Suppl Figure S13 (DOCX 73 kb)


  1. 1.
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2011) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50PubMedGoogle Scholar
  2. 2.
    Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80:91–138 Google Scholar
  3. 3.
    Dürr S, Thomason JC (2010) Biofouling. Wiley-Blackwell, OxfordGoogle Scholar
  4. 4.
    Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98CrossRefPubMedGoogle Scholar
  5. 5.
    Qian P-Y, Lau SCK, Dahms H-U, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar. Biotechnol. 9:399–410CrossRefPubMedGoogle Scholar
  6. 6.
    Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3:453–470Google Scholar
  7. 7.
    Salta M, Wharton JA, Blache Y, Stokes KR, Briand J-F (2013) Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15:2879–2893PubMedGoogle Scholar
  8. 8.
    Chiu JMY, Zhang R, Wang H, Thiyagarajan V, Qian PY (2008) Nutrient effects on intertidal community: from bacteria to invertebrates. Mar. Ecol. Prog. Ser. 358:41–50Google Scholar
  9. 9.
    Lau SCK, Thiyagarajan V, Cheung SCK, Qian P-Y (2005) Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat. Microb. Ecol. 38:41–51Google Scholar
  10. 10.
    Bellou N, Papathanassiou E, Dobretsov S, Lykousis V, Colijn F (2012) The effect of substratum type, orientation and depth on the development of bacterial deep-sea biofilm communities grown on artificial substrata deployed in the eastern Mediterranean. Biofouling 28:199–213CrossRefPubMedGoogle Scholar
  11. 11.
    Lee J-W, Nam J-H, Kim Y-H, Lee K-H, Lee D-H (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol. 46:174–182CrossRefPubMedGoogle Scholar
  12. 12.
    Jones P, Cottrell M, Kirchman D, Dexter S (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb. Ecol. 53:153–162CrossRefPubMedGoogle Scholar
  13. 13.
    Briand J-F, Djeridi I, Jamet D, Coupé S, Bressy C, Molmeret M, Le Berre B, Rimet F, Bouchez A, Blache Y (2012) Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling 28:453–463CrossRefPubMedGoogle Scholar
  14. 14.
    Elifantz H, Horn G, Ayon M, Cohen Y, Minz D (2013) Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 85:348–357CrossRefPubMedGoogle Scholar
  15. 15.
    Huggett MJ, Nedved BT, Hadfield MG (2009) Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Biofouling 25:387–399CrossRefPubMedGoogle Scholar
  16. 16.
    Dang H, Lovell CR (2002) Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl Environ Microbiol 68:496–504Google Scholar
  17. 17.
    Dang H, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475Google Scholar
  18. 18.
    Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74:52–60Google Scholar
  19. 19.
    Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY (2010) Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J 4:817–828CrossRefPubMedGoogle Scholar
  20. 20.
    Lee O, Chung H, Yang J, Wang Y, Dash S, Wang H, Qian P-Y (2014) Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement. Microb. Ecol. 68:81–93CrossRefPubMedGoogle Scholar
  21. 21.
    Dobretsov S, Abed RMM, Voolstra CR (2013) The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling 29:617–627CrossRefPubMedGoogle Scholar
  22. 22.
    Sanli K, Bengtsson-Palme J, Nilsson RH, Kristiansson E, Alm Rosenblad M, Blanck H, Eriksson KM (2015) Metagenomic sequencing of marine periphyton: taxonomic and functional insights into biofilm communities. Front. Microbiol. 6:1192. doi: 10.3389/fmicb.2015.01192
  23. 23.
    Camps M, Barani A, Gregori G, Bouchez A, Le Berre B, Bressy C, Blache Y, Briand J-F (2014) Antifouling coatings influence both abundance and community structure of colonizing biofilms: a case study in the northwestern Mediterranean Sea. Appl. Environ. Microbiol. 80:4821–4831Google Scholar
  24. 24.
    Patil JS, Anil AC (2005) Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling 21:189–206CrossRefPubMedGoogle Scholar
  25. 25.
    Nayar S, Goh BPL, Chou LM (2005) Settlement of marine periphytic algae in a tropical estuary. Estuar. Coast. Shelf Sci. 64:241–248CrossRefGoogle Scholar
  26. 26.
    Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC Press, Boca RatonGoogle Scholar
  27. 27.
    Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112:4347–4390CrossRefPubMedGoogle Scholar
  28. 28.
    Muthukrishnan T, Abed RMM, Dobretsov S, Kidd B, Finnie AA (2014) Long-term microfouling on commercial biocidal fouling control coatings. Biofouling 30:1155–1164Google Scholar
  29. 29.
    Leary DH, Li RW, Hamdan LJ, Hervey WJ, Lebedev N, Wang Z, Deschamps JR, Kusterbeck AW, Vora GJ (2014) Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling 30:1211–1223Google Scholar
  30. 30.
    Dobretsov S, Thomason JC (2011) The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies. Biofouling 27:869–880CrossRefPubMedGoogle Scholar
  31. 31.
    Zargiel Hunsucker K, Koka A, Lund G, Swain G (2014) Diatom community structure on in-service cruise ship hulls. Biofouling 30:1133–1140Google Scholar
  32. 32.
    Zargiel KA, Coogan JS, Swain GW (2011) Diatom community structure on commercially available ship hull coatings. Biofouling 27:955–965CrossRefPubMedGoogle Scholar
  33. 33.
    Dang DH, Schafer J, Brach-Papa C, Lenoble V, Durrieu G, Dutruch L, Chiffoleau JF, Gonzalez JL, Blanc G, Mullot JU, Mounier S, Garnier C (2015) Evidencing the impact of coastal contaminated sediments on mussels through Pb stable isotopes composition. Environ Sci Technol 49:11438–11448Google Scholar
  34. 34.
    Xue Z, Lu H, Liu W-T (2014) Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community. Biofouling 30:813–821CrossRefPubMedGoogle Scholar
  35. 35.
    Oursel B, Garnier C, Durrieu G, Mounier S, Omanovic D, Lucas Y (2013) Dynamics and fates of trace metals chronically. Input in a Mediterranean coastal zone impacted by a large urban area. Mar. Pollut. Bull. 69:137–149Google Scholar
  36. 36.
    Cindric AM, Garnier C, Oursel B, Pizeta I, Omanovic D (2015) Evidencing the natural and anthropogenic processes controlling trace metals dynamic in a highly stratified estuary: the Krka River estuary (Adriatic, Croatia). Mar. Pollut. Bull. 94:199–216Google Scholar
  37. 37.
    Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227–5236Google Scholar
  38. 38.
    Giongo A, Crabb DB, Davis-Richardson AG, Chauliac D, Mobberley JM, Gano KA, Mukherjee N, Casella G, Roesch LFW, Walts B, Riva A, King G, Triplett EW (2010) PANGEA: pipeline for analysis of next generation amplicons. ISME J 4:852–861Google Scholar
  39. 39.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200Google Scholar
  40. 40.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998Google Scholar
  41. 41.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35:7188–7196Google Scholar
  42. 42.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:10.Google Scholar
  43. 43.
    Morley NH, Burton JD, Tankere SPC, Martin JM (1997) Distribution and behaviour of some dissolved trace metals in the western Mediterranean Sea. Deep-Sea Res Part II-Top Stud Oceanogr 44:675–691Google Scholar
  44. 44.
    Tankere SPC, Statham PJ (1996) Distribution of dissolved Cd, Cu, Ni and Zn in the Adriatic Sea. Mar. Pollut. Bull. 32:623–630.CrossRefGoogle Scholar
  45. 45.
    Turner A (2010) Marine pollution from antifouling paint particles. Mar. Pollut. Bull. 60:159–171Google Scholar
  46. 46.
    Lawes JC, Neilan BA, Brown MV, Clark GF, Johnston EL (2016) Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling 32:57–69Google Scholar
  47. 47.
    Degerman R, Dinasquet J, Riemann L, de Luna SS, Andersson A (2013) Effect of resource availability on bacterial community responses to increased temperature. Aquat. Microb. Ecol. 68:131–142Google Scholar
  48. 48.
    Brown BL, LePrell RV, Franklin RB, Rivera MC, Cabral FM, Eaves HL, Gardiakos V, Keegan KP, King TL (2015) Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River. Stand. Genomic Sci. 10:14Google Scholar
  49. 49.
    Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308Google Scholar
  50. 50.
    Sathe P, Richter J, Myint MTZ, Dobretsov S, Dutta J (2016) Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. Biofouling 32:383–395Google Scholar
  51. 51.
    Slightom RN, Buchan A (2009) Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl. Environ. Microbiol. 75:6027–6037Google Scholar
  52. 52.
    Solic M, Krstulovic N, Santic D, Sestanovic S, Ordulj M, Bojanic N, Kuspilic G (2015) Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. Biol. Assoc. U. K. 95:1565–1578CrossRefGoogle Scholar
  53. 53.
    Schirmeister F, Wieczorek A, Dieckmann R, Taureck K, Strauch E (2014) Evaluation of molecular methods to discriminate the closely related species Vibrio fluvialis and Vibrio furnissii. Int J Med Microbiol 304:851–857Google Scholar
  54. 54.
    Shikuma NJ, Hadfield MG (2010) Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26:39–46CrossRefPubMedGoogle Scholar
  55. 55.
    Molino PJ, Campbell E, Wetherbee R (2009) Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia. Biofouling 25:685–694CrossRefPubMedGoogle Scholar
  56. 56.
    Molino PJ, Childs S, Hubbard MRE, Carey JM, Burgman MA, Wetherbee R (2009) Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in eastern Australia. Biofouling 25:149–162CrossRefPubMedGoogle Scholar
  57. 57.
    Pochon X, Zaiko A, Hopkins GA, Banks JC, Wood SA (2015) Early detection of eukaryotic communities from marine biofilm using high-throughput sequencing: an assessment of different sampling devices. Biofouling 31:241–251CrossRefPubMedGoogle Scholar
  58. 58.
    Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S (2016) The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling 32:763–777Google Scholar
  59. 59.
    Edwards JL, Smith DL, Connolly J, McDonald JE, Cox MJ, Joint I, Edwards C, McCarthy AJ (2010) Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes 1:371–384CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Callow ME (1986) Fouling algae from ‘In-service’ ships. Bot. Mar. 29:351–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.MAPIEM-EA 4323Université de ToulonLa GardeFrance
  2. 2.CNRS/INSU, IRD, Institut Méditerranéen d’Océanologie (MIO)Université d’Aix-Marseille, Université de ToulonMarseilleFrance
  3. 3.PROTEE-EA 3819Université de ToulonLa GardeFrance
  4. 4.LBCM -EA 3883, IUEMUniversité de Bretagne SudLorientFrance
  5. 5.UMR CARRTEL, INRAUniversité Savoie Mont BlancThonon-Les-BainsFrance
  6. 6.Laboratoire “Microorganismes: Génome et EnvironnementClermont Université, Université Blaise PascalClermont-FerrandFrance
  7. 7.UMR 6023, LMGECNRSAubiereFrance

Personalised recommendations