Microbial Ecology

, Volume 74, Issue 3, pp 670–680 | Cite as

How do Elevated CO2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System

  • Seung-Hoon Lee
  • Patrick J. Megonigal
  • Hojeong Kang
Soil Microbiology

Abstract

Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.

Keywords

Salt marsh Elevated CO2 N addition Functional microbial community C3/C4 plant 

Notes

Acknowledgements

This study was supported by NRF (2011-0030040) and SGER (2016R1D1A1A02937049).

Supplementary material

248_2017_960_MOESM1_ESM.docx (70 kb)
ESM 1 (DOCX 69 kb)

References

  1. 1.
    Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81:169–193CrossRefGoogle Scholar
  2. 2.
    Bowen JL, Ward BB, Morrison HG, Hobbie JE, Valiela I, Deegan LA, et al (2011) Microbial community composition in sediments resists perturbation by nutrient enrichment. ISME J 5:1540–1548CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Seyler LM, McGuinness LM, Kerkhof LJ (2014) Crenarchaeal heterotrophy in salt marsh sediments. ISME J 8:1534–1543CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, et al (2011) Response of soil cellulolytic fungal communities to elevated atmospheric CO2 are complex and variable across five ecosystems. Environ. Microbiol. 13:2778–2793CrossRefPubMedGoogle Scholar
  5. 5.
    Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1:117–141CrossRefGoogle Scholar
  6. 6.
    Langely JA, McKee KI, Cahoon DR, Cherry JA, Megonigal JP (2008) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Nat Aca Sci 106:6182–6186CrossRefGoogle Scholar
  7. 7.
    Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489:550–553CrossRefPubMedGoogle Scholar
  8. 8.
    Caffrey JM, Murrell JC, Wigand C, McKinney RA (2007) Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biogeochem 82:251–264CrossRefGoogle Scholar
  9. 9.
    Graham SA, Mendelssohn IA (2010) Multiple levels of nitrogen applied to an oligohaline marsh identify a plant community response sequence to eutrophication. Mar. Ecol. Prog. Ser. 417:73–82CrossRefGoogle Scholar
  10. 10.
    Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 level limited by nitrogen-induced plant species shift. Nature 466:96–99CrossRefPubMedGoogle Scholar
  11. 11.
    Bowen JL, Crump BC, Deegan LA, Hobbie JE (2009) Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. ISME J 3:924–934CrossRefPubMedGoogle Scholar
  12. 12.
    Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdo R, Fritze H, et al (2012) High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob Change Biol 18:1163–1172CrossRefGoogle Scholar
  13. 13.
    Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W (2010) Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60:850–861CrossRefPubMedGoogle Scholar
  14. 14.
    Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927CrossRefGoogle Scholar
  15. 15.
    Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA (2011) Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Change Biol 17:2629–2639CrossRefGoogle Scholar
  16. 16.
    Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J (2015) Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep 5:9316CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden BeachGoogle Scholar
  18. 18.
    Langley JA, Sigrist MV, Duls J, Cahoon DR, Lynch JC, Megonigal JP (2009) Global change and marsh elevation dynamics: experimenting where land meets sea and biology meets geology. Smithson. Contrib. Mar. Sci. 38:391–400CrossRefGoogle Scholar
  19. 19.
    Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 6:1058–1077CrossRefPubMedGoogle Scholar
  20. 20.
    Kelly JJ, Peterson E, Winkelman J, Walter TJ, Rier ST, Tuchman NC (2013) Elevated atmospheric CO2 impacts abundance and diversity of nitrogen cycling functional genes in soil. Microb. Ecol. 65:394–404CrossRefPubMedGoogle Scholar
  21. 21.
    Hunger S, Schmidt O, Hilgarth M, Horn MA, Kolb S, Conrad R, Drake HL (2011) Competing formate- and carbon dioxide utilizing prokaryotes in an anoxic methane-emitting fen soil. Appl. Environ. Microbiol. 77:3773–3785CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Degelmann DM, Borken W, Drake HL, Kolb S (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. Appl. Environ. Microbiol. 76:3228–3235CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bowen JL, Byrnes JEK, Weisman D, Colaneri C (2013) Functional gene pyrosequencing and network analysis: an approach to examine the response of denitrifying bacteria to increased nitrogen supply in salt marsh sediments. Front. Microbiol. 4:342. doi: 10.3389/fmicb.2013.00342 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    White KP, Langley JA, Cahoon DR, Megonigal JP (2012) C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies. Estuar Coast 35:1028–1035CrossRefGoogle Scholar
  25. 25.
    van Groenigen KJ, Osenberg GW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214–216CrossRefPubMedGoogle Scholar
  26. 26.
    Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641CrossRefPubMedGoogle Scholar
  27. 27.
    Lee JA, Francis CA (2016) Spatiotemporal characterization of San Francisco Bay denitrifying communities: a comparison of nirK and nirS diversity and abundance. Microb. Ecol. doi: 10.1007/s00248-016-0865-y PubMedCentralGoogle Scholar
  28. 28.
    Wang H-T, Su J-Q, Zheng T-L, Yang X-R (2014) Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Appl Microbiol Biotech 98:9375–9387CrossRefGoogle Scholar
  29. 29.
    Yuan Q, Liu P, Lu Y (2012) Differential responses of nirK- and nirS-carrying bacteria to denitrifying conditions in the anoxic rice field soil. Environ. Microbiol. Rep. 4:113–122CrossRefPubMedGoogle Scholar
  30. 30.
    Bañeras L, Ruiz-Rueda O, López-Flores R, Quintana X, Hallin S (2012) The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation. Int. Microbiol. 15:89–99PubMedGoogle Scholar
  31. 31.
    Hamersley MR, Howes BL (2005) Coupled nitrification-denitrification measured in situ in a Spartina alterniflora marsh with a 15NH4 + tracer. Mar. Ecol. Prog. Ser. 299:123–135CrossRefGoogle Scholar
  32. 32.
    Peng X, Yando E, Hildebrand E, Dwyer C, Kearney A, Waciega A, et al (2013) Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front in Microbiol 3:445–455CrossRefGoogle Scholar
  33. 33.
    Caffrey JM, Hollibaugh JT, Bano N, Haskins J (2010) Effects of upwelling on short-term variability in microbial and biogeochemical processes in estuarine sediments from Elkhorn Slough, California, USA. Aquat. Microb. Ecol. 58:261–271CrossRefGoogle Scholar
  34. 34.
    Long X, Chen C, Xu Z, Oren R, He J-Z (2012) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol. Biochem. 46:163–171CrossRefGoogle Scholar
  35. 35.
    Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 14:993–1008CrossRefPubMedGoogle Scholar
  36. 36.
    Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Change Biol 14:657–669CrossRefGoogle Scholar
  37. 37.
    Zeleke J, Sheng Q, Wang J-G, Huang M-Y, Xia F, Wu J-H, Quan Z (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4:243. doi: 10.3389/fmicb.2013.00243 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aronson EL, Helliker BR (2010) Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91:3242–3251CrossRefPubMedGoogle Scholar
  39. 39.
    Chmura GL, Kellman L, van Ardenne L, Guntenspergen GR (2016) Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment. PLoS One 11:e0149937CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Irvine IC, Vivanco L, Bentley PN, Martiny JBH (2012) The effect of nitrogen enrichment on C1-cycling microorganisms and methane flux in salt marsh sediments. Front. Microbiol. 3:90. doi: 10.3389/fmicb.2012.00090 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jang I, Lee SH, Zho KD, Kang H (2011) Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43:620–627CrossRefGoogle Scholar
  42. 42.
    Kolb S, Carbrera A, Kammann C, Kämpfer P, Conrad R, Jäckel U (2005) Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biol. Fertil. Soils 41:337–342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Seung-Hoon Lee
    • 1
  • Patrick J. Megonigal
    • 2
  • Hojeong Kang
    • 1
  1. 1.School of Civil and Environmental EngineeringYonsei UniversitySeoulSouth Korea
  2. 2.Smithsonian Environmental Research CenterWashingtonUSA

Personalised recommendations