Microbial Ecology

, Volume 74, Issue 3, pp 735–744 | Cite as

Genomic Epidemiology and Management of Salmonella in Island Ecosystems Used for Takahe Conservation

  • Zoë L. Grange
  • Patrick J. Biggs
  • Shanna P. Rose
  • Brett D. Gartrell
  • Nicola J. Nelson
  • Nigel P. French
Host Microbe Interactions
  • 97 Downloads

Abstract

Translocation and isolation of threatened wildlife in new environments may have unforeseen consequences on pathogen transmission and evolution in host populations. Disease threats associated with intensive conservation management of wildlife remain speculative without gaining an understanding of pathogen dynamics in meta-populations and how location attributes may determine pathogen prevalence. We determined the prevalence and population structure of an opportunistic pathogen, Salmonella, in geographically isolated translocated sub-populations of an endangered New Zealand flightless bird, the takahe (Porphyrio hochstetteri). Out of the nine sub-populations tested, Salmonella was only isolated from takahe living on one private island. The apparent prevalence of Salmonella in takahe on the private island was 32% (95% CI 13–57%), with two serotypes, Salmonella Mississippi and Salmonella houtenae 40:gt-, identified. Epidemiological investigation of reservoirs on the private island and another island occupied by takahe identified environmental and reptile sources of S. Mississippi and S. houtenae 40:gt- on the private island. Single nucleotide polymorphism analysis of core genomes revealed low-level diversity among isolates belonging to the same serotype and little differentiation according to host and environmental source. The pattern observed may be representative of transmission between sympatric hosts and environmental sources, the presence of a common unsampled source, and/or evidence of a recent introduction into the ecosystem. This study highlights how genomic epidemiology can be used to ascertain and understand disease dynamics to inform the management of disease threats in endangered wildlife populations.

Keywords

Disease ecology New Zealand Whole genome sequencing Porphyrio hochstetteri Translocation 

Supplementary material

248_2017_959_MOESM1_ESM.phylip (2.7 mb)
ESM 1(PHYLIP 2750 kb)

References

  1. 1.
    Thompson RC, Lymbery AJ, Smith A (2010) Parasites, emerging disease and wildlife conservation. Int. J. Parasitol. 40:1163–1170. doi:10.1016/j.ijpara.2010.04.009 CrossRefPubMedGoogle Scholar
  2. 2.
    Sainsbury AW, Vaughan-Higgins RJ (2012) Analyzing disease risks associated with translocations. Conserv. Biol. 26:442–452. doi:10.1111/j.1523-1739.2012.01839.x CrossRefPubMedGoogle Scholar
  3. 3.
    Archie EA, Luikart G, Ezenwa VO (2009) Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol. Evol. 24:21–30. doi:10.1016/j.tree.2008.08.008 CrossRefPubMedGoogle Scholar
  4. 4.
    VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol. Conserv. 169:136–146. doi:10.1016/j.biocon.2013.11.008 CrossRefGoogle Scholar
  5. 5.
    VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2013) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 83:406–414. doi:10.1111/1365-2656.12137 CrossRefPubMedGoogle Scholar
  6. 6.
    Bull CM, Godfrey SS, Gordon DM (2012) Social networks and the spread of Salmonella in a sleepy lizard population. Mol. Ecol. 21:4386–4392. doi:10.1111/j.1365-294X.2012.05653.x CrossRefPubMedGoogle Scholar
  7. 7.
    Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R (2011) Whole genome sequencing and social network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364:730–739CrossRefPubMedGoogle Scholar
  8. 8.
    Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13:601–612. doi:10.1038/nrg3226 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Benton CH, Delahay RJ, Trewby H, Hodgson DJ (2015) What has molecular epidemiology ever done for wildlife disease research? Past contributions and future directions. Eur. J. Wildl. Res. 61:1–16. doi:10.1007/s10344-014-0882-4 CrossRefGoogle Scholar
  10. 10.
    Grange ZL, Gartrell BD, Biggs PJ, Nelson NJ, Anderson M, French NP (2016) Microbial genomics of a host-associated commensal bacterium in fragmented populations of endangered Takahe. Microb. Ecol. 71:1020–1029. doi:10.1007/s00248-015-0721-5 CrossRefPubMedGoogle Scholar
  11. 11.
    BirdLife International (2013) Porphyrio hochstetteri. http://www.iucnredlist.org/. Accessed 24 Feb 2014
  12. 12.
    Wickes C, Crouchley D, Maxwell JM (2009) Takahe (Porphorio hochstetteri) recovery plan 2007–2012. In: Department of Conservation (ed.), Wellington, NZGoogle Scholar
  13. 13.
    Grange ZL, Van Andel M, French NP, Gartrell BD (2014) Network analysis of translocated Takahe populations to identify disease surveillance targets. Conserv. Biol. 28:518–528. doi:10.1111/cobi.12178 CrossRefPubMedGoogle Scholar
  14. 14.
    Acevedo-Whitehouse K, Gulland F, Greig D, Amos W (2003) Inbreeding: disease susceptibility in California sea lions. Nature 422:35–35CrossRefPubMedGoogle Scholar
  15. 15.
    Smith KF, Acevedo-Whitehouse K, Pedersen AB (2009) The role of infectious diseases in biological conservation. Anim. Conserv. 12:1–12. doi:10.1111/j.1469-1795.2008.00228.x CrossRefGoogle Scholar
  16. 16.
    Cunningham AA (1996) Disease risks of wildlife translocations. Conserv. Biol. 10:349–353. doi:10.1046/j.1523-1739.1996.10020349.x CrossRefGoogle Scholar
  17. 17.
    McInnes K, Cromarty P, Ombler J (2004) Standard operating procedure for the health management of terrestrial vertebrate species protected under the wildlife act. Department of Conservation, Wellington, NZGoogle Scholar
  18. 18.
    Ewen JG, Thorogood R, Nicol C, Armstrong DP, Alley M (2007) Salmonella typhimurium in hihi, New Zealand. Emerg. Infect. Dis. 13:788–790CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alley MR, Connolly JH, Fenwick SG, Mackereth GF, Leyland MJ, Rogers LE, Haycock M, Nicol C, Reed CEM (2002) An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. N. Z. Vet. J. 50:170–176CrossRefPubMedGoogle Scholar
  20. 20.
    Lawson B, Howard T, Kirkwood JK, Macgregor SK, Perkins M, Robinson RA, Ward LR, Cunningham AA (2010) Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7:294–306. doi:10.1007/s10393-010-0349-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Hall AJ, Saito EK (2008) Avian wildlife mortality events due to salmonellosis in the United States, 1985-2004. J. Wildl. Dis. 44:585–593CrossRefPubMedGoogle Scholar
  22. 22.
    Winfield MD, Groisman EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:3687–3694. doi:10.1128/Aem.69.7.3687-3694.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stevenson M (2014) epiR: an R package for the analysis of epidemiological dataGoogle Scholar
  24. 24.
    Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. 25.
    Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC bioinformatics 11:595. doi:10.1186/1471-2105-11-595 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. doi:10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R (2013) Geneious Pro In: Biomatters (ed.)Google Scholar
  28. 28.
    Gardner SN, Hall BG (2013) When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS ONE 8. doi: 10.1371/journal.pone.0081760
  29. 29.
    Ewen JG, Armstrong DP, Empson R, Jack S, Makan T, McInnes K, Parker KA, Richardson K, Alley M (2012) Parasite management in translocations: lessons from a threatened New Zealand bird. Oryx 46:446–456. doi:10.1017/s0030605311001281 CrossRefGoogle Scholar
  30. 30.
    Leighton FA (2002) Health risk assessment of the translocation of wild animals. Revue Scientifique et Technique-Office International des Epizooties 21:187–216Google Scholar
  31. 31.
    Jakob-Hoff R, MacDiarmid SC, Lees C, Miller PS, Travis D, Kock RA (2014), International Office of Epizootics., International Union for Conservation of Nature. Manual of procedures for wildlife disease risk analysis. World Organisation for Animal Health, pp. ix, 149 pagesGoogle Scholar
  32. 32.
    Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8:1468–1473CrossRefPubMedGoogle Scholar
  33. 33.
    Viana M, Mancy R, Biek R, Cleaveland S, Cross PC, Lloyd-Smith JO, Haydon DT (2014) Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29:270–279. doi:10.1016/j.tree.2014.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Orr M (1997) Salmonella Brandenburg in a takahe. In: NZVA, WSo (ed.) Kokako, vol. 4, pp. 14Google Scholar
  35. 35.
    McLelland JM, Gartrell BD, Roe WD (2011) A retrospective study of post-mortem examination findings in takahe (Porphyrio hochstetteri). N. Z. Vet. J. 59:160–165. doi:10.1080/00480169.2011.579243 CrossRefPubMedGoogle Scholar
  36. 36.
    ESR (2010) Public health surveillance: non human Salmonella isolates. Accessed 12 Jun 2014Google Scholar
  37. 37.
    Jamieson IG, Ryan CJ (2001) Island takahe: closure of the debate over the merits of introducing Fiordland takahe to predator-free islands. In: Jamieson, IG, Lee, WG (eds.) The takahe: fifty years of conservation management and research. Otago University Press, Dunedin, New Zealand, pp. 96–113Google Scholar
  38. 38.
    Iveson JB, Shellam GR, Bradshaw SD, Smith DW, Mackenzie JS, Mofflin RG (2009) Salmonella infections in Antarctic fauna and island populations of wildlife exposed to human activities in coastal areas of Australia. Epidemiology & Infection 137:858–870. doi:10.1017/S0950268808001222 CrossRefGoogle Scholar
  39. 39.
    Middleton DMRL, La Flamme AC, Gartrell BD, Nelson NJ (2014) Reptile reservoirs and seasonal variation in the environmental presence of Salmonella in an island ecosystem, Stephens Island, New Zealand. J. Wildl. Dis. 50:655–659. doi:10.7589/2013-10-277 CrossRefPubMedGoogle Scholar
  40. 40.
    Parsons SK, Bull CM, Gordon DM (2010) Low prevalence of Salmonella enterica in Australian wildlife. Environ. Microbiol. Rep. 2:657–659. doi:10.1111/j.1758-2229.2010.00152.x CrossRefPubMedGoogle Scholar
  41. 41.
    Ashbolt R, Kirk MD (2006) Salmonella Mississippi infections in Tasmania: the role of native Australian animals and untreated drinking water. Epidemiology & Infection 134:1257–1265. doi:10.1017/S0950268806006224 CrossRefGoogle Scholar
  42. 42.
    van Andel M, Jackson BH, Midwinter AC, Alley MR, Ewen JG, McInnes K, Hoff RJ, Reynolds AD, French N (2015) Investigation of mortalities associated with Salmonella spp. infection in wildlife on Tiritiri Matangi Island in the Hauraki Gulf of New Zealand. N. Z. Vet. J. 63:235–239. doi:10.1080/00480169.2014.990065 CrossRefPubMedGoogle Scholar
  43. 43.
    Nunn CL, Thrall PH, Kappeler PM (2014) Shared resources and disease dynamics in spatially structured populations. Ecol. Model. 272:198–207. doi:10.1016/j.ecolmodel.2013.10.004 CrossRefGoogle Scholar
  44. 44.
    Hines AM, Ezenwa VO, Cross P, Rogerson JD (2007) Effects of supplemental feeding on gastrointestinal parasite infection in elk (Cervus elaphus): preliminary observations. Vet. Parasitol. 148:350–355CrossRefPubMedGoogle Scholar
  45. 45.
    Dhondt AA, Altizer S, Cooch EG, Davis AK, Dobson A, Driscoll MJL, Hartup BK, Hawley DM, Hochachka WM, Hosseini PR, Jennelle CS, Kollias GV, Ley DH, Swarthout ECH, Sydenstricker KV (2005) Dynamics of a novel pathogen in an avian host: mycoplasmal conjunctivitis in house finches. Acta Trop. 94:77–93. doi:10.1016/j.actatropica.2005.01.009 CrossRefPubMedGoogle Scholar
  46. 46.
    Lawson B, Robinson RA, Colvile KM, Peck KM, Chantrey J, Pennycott TW, Simpson VR, Toms MP, Cunningham AA (2012) The emergence and spread of finch trichomonosis in the British Isles. Philosophical Transactions of the Royal Society B: Biological Sciences 367:2852–2863. doi:10.1098/rstb.2012.0130 CrossRefGoogle Scholar
  47. 47.
    Joseph MB, Mihaljevic JR, Arellano AL, Kueneman JG, Preston DL, Cross PC, Johnson PTJ, Morgan E (2013) Taming wildlife disease: bridging the gap between science and management. J. Appl. Ecol. 50:702–712. doi:10.1111/1365-2664.12084 CrossRefGoogle Scholar
  48. 48.
    Ryan CJ, Jamieson IG (1998) Estimating the home range and carrying capacity for takahe on predator free offshore islands: implications for future management. N. Z. J. Ecol. 22:17–24Google Scholar
  49. 49.
    Vigo GB, Leotta GA, Caffer MI, Salve A, Binsztein N, Pichel M (2011) Isolation and characterization of Salmonella enterica from Antarctic wildlife. Polar Biol. 34:675–681. doi:10.1007/s00300-010-0923-8 CrossRefGoogle Scholar
  50. 50.
    Biek R, Pybus OG, Lloyd-Smith JO, Didelot X (2015) Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30:306–313. doi:10.1016/j.tree.2015.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, Sangal V, Anjum MF, Achtman M, Falush D, Donnelly P (2011) Recombination and population structure in Salmonella enterica. PLoS Genet. 7:e1002191. doi:10.1371/journal.pgen.1002191 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat. Rev. Microbiol. 4:670–681CrossRefPubMedGoogle Scholar
  53. 53.
    Bager F, Petersen J (1991) Sensitivity and specificity of different methods for the isolation of Salmonella from pigs. Acta Vet. Scand. 32:473–481PubMedGoogle Scholar
  54. 54.
    Worby CJ, Lipsitch M, Hanage WP (2014) Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput. Biol. 10:e1003549. doi:10.1371/journal.pcbi.1003549 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Benavides JA, Cross PC, Luikart G, Creel S (2014) Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling. Evol. Appl. 7:774–787. doi:10.1111/Eva.12173 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Biek R, O'Hare A, Wright D, Mallon T, McCormick C, Orton RJ, McDowell S, Trewby H, Skuce RA, Kao RR (2012) Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8:e1003008. doi:10.1371/journal.ppat.1003008 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Matthews DT, Schmieder R, Silva GGZ, Busch J, Cassman N, Dutilh BE, Green D, Matlock B, Heffernan B, Olsen GJ, Farris Hanna L, Schifferli DM, Maloy S, Dinsdale EA, Edwards RA (2015) Genomic comparison of the closely-related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS One 10:e0126883. doi:10.1371/journal.pone.0126883 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Deng X, Shariat N, Driebe EM, Roe CC, Tolar B, Trees E, Keim P, Zhang W, Dudley EG, Fields PI, Engelthaler DM (2015) Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J. Clin. Microbiol. 53:212–218. doi:10.1128/jcm.02332-14 CrossRefPubMedGoogle Scholar
  59. 59.
    Grange ZL, Gartrell BD, Biggs PJ, Nelson NJ, Marshall JC, Howe L, Balm GMM, French NP (2015) Using a common commensal bacterium in endangered Takahe, as a model to explore pathogen dynamics in isolated wildlife populations. Conserv. Biol. 29:1327–1336. doi:10.1111/cobi.12521 CrossRefPubMedGoogle Scholar
  60. 60.
    Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015. doi:10.1099/mic.0.055459-0 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zoë L. Grange
    • 1
    • 2
    • 3
    • 4
  • Patrick J. Biggs
    • 1
    • 2
  • Shanna P. Rose
    • 5
  • Brett D. Gartrell
    • 1
    • 3
  • Nicola J. Nelson
    • 5
  • Nigel P. French
    • 1
    • 2
  1. 1.Allan Wilson Centre, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  2. 2.mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  3. 3.Wildbase, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  4. 4.One Health InstituteUniversity of California DavisDavisUSA
  5. 5.Allan Wilson Centre, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations