Advertisement

Microbial Ecology

, Volume 74, Issue 2, pp 259–263 | Cite as

Defining Disturbance for Microbial Ecology

  • Craig J. PlanteEmail author
Commentary

Abstract

Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists’ concept of “disturbance” has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist’s notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of “disturbance” for microbial ecologists is proposed that distinguishes from “stress” and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.

Keywords

Disturbance Stress Microbe Perturbation Macroorganism 

Notes

Acknowledgments

Contribution # 487 of the Grice Marine Laboratory.

References

  1. 1.
    Ferrer M, Vitor AP, dos Santos M, Ott SJ, Moya A (2014) Gut microbiota disturbance during antibiotic therapy: a multiomic approach. Gut Microbes 5:64–70CrossRefPubMedGoogle Scholar
  2. 2.
    Findlay RH, Trexler MB, Guckert JB, White DC (1990) Laboratory study of disturbance in marine sediments: response of a microbial community. Mar. Ecol. Prog. Ser. 62:121–133CrossRefGoogle Scholar
  3. 3.
    Plante CJ, Wilde SB (2004) Biotic disturbance, recolonization, and early succession of bacterial assemblages in intertidal sediments. Microb. Ecol. 48:154–166CrossRefPubMedGoogle Scholar
  4. 4.
    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, Matulich KL (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol doi. doi: 10.3389/fmicb.2012.00417 Google Scholar
  5. 5.
    Sousa WP (1984) The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15:353–391CrossRefGoogle Scholar
  6. 6.
    White PS, Pickett STA (1985) Natural disturbance and patch dynamics, an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, New York, pp. 3–13Google Scholar
  7. 7.
    Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–1194CrossRefGoogle Scholar
  8. 8.
    Berga M, Székely AJ, Langenheder S (2012) Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS One doi. doi: 10.1371/journal.pone.0036959 Google Scholar
  9. 9.
    Rafalowski S, Plante C (2013) Non-equilibrium processes structuring benthic bacterial communities following deposit feeding by a sea cucumber. Mar. Ecol. Prog. Ser. 478:115–126CrossRefGoogle Scholar
  10. 10.
    Fauth JE, Bernardo J, Camara M, Resetarits Jr WJ, Van Buskirk J, McCollum SA (1996) Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147:282–286CrossRefGoogle Scholar
  11. 11.
    Frazier JG (1994) The pressure of terminal stresses—urgency of robust definitions in ecology. Bull Brit Ecol Soc 25:207–209Google Scholar
  12. 12.
    Borics G, Várbíró G, Padisák J (2013) Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia 711:1–7CrossRefGoogle Scholar
  13. 13.
    Kolasa J, Pickett STA (1992) Ecosystem stress and health: an expansion of the conceptual basis. J Aquat Ecosystem Health 1:7–13CrossRefGoogle Scholar
  14. 14.
    Rykiel EJ (1985) Towards a definition of ecological disturbance. Aust. J. Ecol. 10:361–365CrossRefGoogle Scholar
  15. 15.
    Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136CrossRefGoogle Scholar
  16. 16.
    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77:2367–2375CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bérard A, Sassi MB, Renault P, Gros R (2012) Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J. Soils Sediments 12:513–518CrossRefGoogle Scholar
  18. 18.
    Jones AC, Liao TS, Naja FZ, Roe BA, Hambright KD, Caron DA (2013) Seasonality and disturbance: annual pattern and response of the bacterial and microbial eukaryotic assemblages in a freshwater ecosystem. Environ Microbial 15:2557–2572CrossRefGoogle Scholar
  19. 19.
    Li J, Zheng YM, Liu YR, Ma YB, Hu HW, He JZ (2014) Initial copper stress strengthens the resistance of soil microorganisms to a subsequent copper stress. Microb. Ecol. 67:931–941CrossRefPubMedGoogle Scholar
  20. 20.
    Thion C, Prosser JI (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying—rewetting stress. FEMS Microbiol. Ecol. 90:380–389PubMedGoogle Scholar
  21. 21.
    Varnam A, Evans M (2000) Environmental microbiology. ASM Press, Washington DCCrossRefGoogle Scholar
  22. 22.
    Yin J, Gao H (2011) Stress responses of Shewanella. Int J Microbiol. doi: 10.1155/2011/863623 PubMedPubMedCentralGoogle Scholar
  23. 23.
    De Vries FT, Shade A (2014) Controls on soil microbial community stability under climate change. Front Microbiol doi. doi: 10.3389/fmicb.2013.00265 Google Scholar
  24. 24.
    Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. P Natl Acad Sci USA 105:11512–11519CrossRefGoogle Scholar
  25. 25.
    Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the δ13 C of soil-respired CO2. Soil Biol. Biochem. 32:699–706CrossRefGoogle Scholar
  26. 26.
    Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5:691–705CrossRefPubMedGoogle Scholar
  27. 27.
    Stockdale EA, Banning NC, Murphy DV (2013) Rhizosphere effects on functional stability of microbial communities in conventional and organic soils following elevated temperature treatment. Soil Biol. Biochem. 57:56–59CrossRefGoogle Scholar
  28. 28.
    Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65:1–13CrossRefGoogle Scholar
  29. 29.
    Lake P (2000) Disturbance, patchiness and species diversity in streams. J. N. Am. Benthol. Soc. 19:573–592CrossRefGoogle Scholar
  30. 30.
    Berga Quintana M (2013) Assembly mechanisms in aquatic bacterial communities: The role of disturbances, dispersal and history. Dissertation, Uppsala UniversityGoogle Scholar
  31. 31.
    Andrews JH (1991) Comparative ecology of microorganisms and macroorganisms. Springer, New YorkCrossRefGoogle Scholar
  32. 32.
    Houlton BZ, Driscoll CT, Fahey TJ, Likens GE, Groffman PM, Bernhardt ES, Buso DC (2003) Nitrogen dynamics in ice storm-damaged forest ecosystems: implications for nitrogen limitation theory. Ecosystems 6:431–443CrossRefGoogle Scholar
  33. 33.
    Grimm NB, Fisher SG (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8:293–307CrossRefGoogle Scholar
  34. 34.
    Ma M, Eaton W (1992) Multicellular oxidant defense in unicellular organisms. Proc. Natl. Acad. Sci. U. S. A. 89:7924–7928CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bonner JT (1998) The origins of multicellularity. Integr. Biol. 1:27–36CrossRefGoogle Scholar
  36. 36.
    Rosslenbroich B (2009) The theory of increasing autonomy in evolution: a proposal for understanding macroevolutionary innovations. Biol. Philos. 24:623–644CrossRefGoogle Scholar
  37. 37.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefPubMedGoogle Scholar
  38. 38.
    Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. P Natl Acad Sci USA 107:5881–5886CrossRefGoogle Scholar
  39. 39.
    Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753CrossRefPubMedGoogle Scholar
  40. 40.
    Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392CrossRefPubMedGoogle Scholar
  41. 41.
    Reice SR (1994) Nonequilibrium determinants of biological community structure. Am. Sci. 82:424–435Google Scholar
  42. 42.
    Poff NL (1992) Why disturbances can be predictable: a perspective on the definition of disturbance in streams. J. N. Am. Benthol. Soc. 11:86–92CrossRefGoogle Scholar
  43. 43.
    Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon AL, Wallace JB, Wissmar RC (1988) The role of disturbance in stream ecology. J. N. Am. Benthol. Soc. 7:433–455CrossRefGoogle Scholar
  44. 44.
    Turner MG, Gardner RH, Dale VH, O'Neill RV (1989) Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55:121–129CrossRefGoogle Scholar
  45. 45.
    Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer-Verlag, New YorkCrossRefGoogle Scholar
  46. 46.
    Cadotte MW (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88:823–829CrossRefPubMedGoogle Scholar
  47. 47.
    Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  48. 48.
    Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28:86–92CrossRefPubMedGoogle Scholar
  49. 49.
    Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100:33–46CrossRefGoogle Scholar
  50. 50.
    Grime JP (1985) Towards a functional description of vegetation. In: White J (ed) The population structure of vegetation. Junk, Dordrecht, pp. 501–514Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Grice Marine Laboratory, Biology DepartmentUniversity of CharlestonCharlestonUSA

Personalised recommendations