Skip to main content
Log in

Investigating the Microbial Degradation Potential in Oil Sands Fluid Fine Tailings Using Gamma Irradiation: A Metagenomic Perspective

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Open-pit mining of the Athabasca oil sands has generated large volumes of waste termed fluid fine tailings (FFT), stored in tailings ponds. Accumulation of toxic organic substances in the tailings ponds is one of the biggest concerns. Gamma irradiation (GI) treatment could accelerate the biodegradation of toxic organic substances. Hence, this research investigates the response of the microbial consortia in GI-treated FFT materials with an emphasis on changes in diversity and organism-related stimuli. FFT materials from aged and fresh ponds were used in the study under aerobic and anaerobic conditions. Variations in the microbial diversity in GI-treated FFT materials were monitored for 52 weeks and significant stimuli (p < 0.05) were observed. Chemoorganotrophic organisms dominated in fresh and aged ponds and showed increased relative abundance resulting from GI treatment. GI-treated anaerobic FFTaged reported stimulus of organisms with biodegradation potential (e.g., Pseudomonas, Enterobacter) and methylotrophic capabilities (e.g., Syntrophus, Smithella). In comparison, GI-treated anaerobic FFTfresh stimulated Desulfuromonas as the principle genus at 52 weeks. Under aerobic conditions, GI-treated FFTaged showed stimulation of organisms capable of sulfur and iron cycling (e.g., Geobacter). However, GI-treated aerobic FFTfresh showed no stimulus at 52 weeks. This research provides an enhanced understanding of oil sands tailings biogeochemistry and the impacts of GI treatment on microorganisms as an effect for targeting toxic organics. The outcomes of this study highlight the potential for this approach to accelerate stabilization and reclamation end points.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl. Environ. Microbiol. 78:7626–7637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: a review. J Environ Sci Health, Part A 40:685–722

    Article  CAS  Google Scholar 

  3. Holowenko FM, MacKinnon MD, Fedorak PM (2000) Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can. J. Microbiol. 46:927–937

    Article  CAS  PubMed  Google Scholar 

  4. Scott AC, MacKinnon MD, Fedorak PM (2005) Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ Sci Technol 39:8388–8394

    Article  CAS  PubMed  Google Scholar 

  5. Grewer DM, Young RF, Whittal RM, Fedorak PM (2010) Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci. Total Environ. 408:5997–6010

    Article  CAS  PubMed  Google Scholar 

  6. Boudens R, Reid T, VanMensel D, Prakasan MRS, Ciborowski JJH, Weisener CG (2016) Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings. Sci. Total Environ. 539:114–124

    Article  CAS  PubMed  Google Scholar 

  7. Clemente JS, Fedorak PM (2005) A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60:585–600

    Article  CAS  PubMed  Google Scholar 

  8. Frank RA, Kavanagh R, Burnison BK, Arsenault G, Headley JV, Peru KM, et al. (2008) Toxicity assessment of collected fractions from an extracted naphthenic acid mixture. Chemosphere 72:1309–1314

    Article  CAS  PubMed  Google Scholar 

  9. Marentette JR, Frank RA, Bartlett AJ, Gillis PL, Hewitt LM, Peru KM, Headley JV, Brunswick P, Shang D, Parrott JL (2015) Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos. Aquat. Toxicol. 164:108–117

    Article  CAS  PubMed  Google Scholar 

  10. Bataineh MP, Scott AC, Fedorak PM, Martin JW (2006) Capillary HLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation. Anal. Chem. 78:8354–8361

    Article  CAS  PubMed  Google Scholar 

  11. Johnson RJ, Smith BE, Sutton PA, McGenity TJ, Rowland SJ, Whitby C (2010) Microbial degradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 2010:1–11

    Google Scholar 

  12. Scott AC, Zubot W, MacKinnon MD, Smith DW, Fedorak PM (2008) Ozonation of oil sands process water removes naphthenic acids and toxicity. Chemosphere 71:156–160

    Article  CAS  PubMed  Google Scholar 

  13. Martin JW, Barri T, Han X, Fedorak PM, Gamal El-Din M, Perez L, et al. (2010) Ozonation of oil sands process-affected water accelerates microbial bioremediation. Environ Sci Technol 44:8350–8356

    Article  CAS  PubMed  Google Scholar 

  14. McMartin DW, Headley JV, Friesen DA, Peru KM, Gillies JA (2004) Photolysis of naphthenic acids in natural surface water. J Environ Sci Health, Part A 39:1361–1383

    Article  Google Scholar 

  15. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899

    Article  CAS  PubMed  Google Scholar 

  16. Siddique T, Penner T, Klassen J, Nesbø C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46:9802–9810

    Article  CAS  PubMed  Google Scholar 

  17. Tan B, Dong X, Sensen CW, Foght J (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 611:599–611

    Article  Google Scholar 

  18. Toor NS, Han X, Franz E, MacKinnon MD, Martin JW, Liber K (2013) Selective biodegradation of naphthenic acids and a probable link between mixture profiles and aquatic toxicity. Environ. Toxicol. Chem. 32:2207–2216

    Article  CAS  PubMed  Google Scholar 

  19. Berdugo-Clavijo C, Gieg LM (2014) Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters. Front. Microbiol. 5:1–10

    Article  Google Scholar 

  20. Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 27:21–29

    Article  CAS  PubMed  Google Scholar 

  21. Clavero MRS, Monk JD, Beuchat LR, Doyle MP, Brackett RE (1994) Inactivation of Escherichia coli O157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl. Environ. Microbiol. 60:2069–2275

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aparecida, da Silva Aquino K (2012) Sterilization by gamma irradiation. Gamma Radiat ISBN: 978–953–51-0316-5, InTech, Available at: http://www.intechopen.com/books/gamma-radiation/sterilization-by-gamma-irradiation.

  23. Tuominen L, Kairesalo T, Hartikainen H (1994) Comparison of methods for inhibiting bacterial activity in sediment. Appl. Environ. Microbiol. 60:3454–3457

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Trevors TJ (1996) Sterilization and inhibition of microbial activity in soil. J. Microbiol. Methods 26:53–59

    Article  CAS  Google Scholar 

  25. McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl. Soil Ecol. 24:117–132

    Article  Google Scholar 

  26. Wolf DC, Dao TH, Scott HD, Lavy TL (1989) Influence of sterilization methods on selected microbiological, physical, and chemical properties. J. Environ. Qual. 18:39–44

    Article  CAS  Google Scholar 

  27. Lotrario JB, Stuart BJ, Lam T, Arands RR, O’Connor OA, Kosson DS (1995) Effects of sterilization methods on the physical characteristics of soil: implications for sorption isotherm analyses. Bull. Environ. Contam. Toxicol. 54:668–675

    Article  CAS  PubMed  Google Scholar 

  28. Bank TL, Kukkadapu RK, Madden AS, Ginder-Vogel MA, Baldwin ME, Jardine PM (2008) Effects of gamma-sterilization on the physico-chemical properties of natural sediments. Chem. Geol. 251:1–7

    Article  CAS  Google Scholar 

  29. Chen M, Walshe G, Chi Fru E, Ciborowski JJH, Weisener CG (2013) Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Appl Geochemistry 37:1–11

    Article  Google Scholar 

  30. Anderson JC, Wiseman SB, Wang N, Moustafa A, Perez-Estrada L, Gamal El-Din M, et al. (2012) Effectiveness of ozonation treatment in eliminating toxicity of oil sands process-affected water to Chironomus dilutus. Environ Sci Technol 46:486–493

    Article  CAS  PubMed  Google Scholar 

  31. Jia W, He Y, Ling Y, Hei D, Shan Q, Zhang Y, Li J (2015) Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation. Radiat. Phys. Chem. 109:17–22

    Article  CAS  Google Scholar 

  32. Siddique T, Kuznetsov P, Kuznetsova A, Arkell N, Young R, Li C, Guigard S, Underwood E, Foght JM (2014) Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Front. Microbiol. 5:106

    PubMed  PubMed Central  Google Scholar 

  33. Siddique T, Kuznetsov P, Kuznetsova A, Li C, Young R, Arocena JM, Foght JM (2014) Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Front. Microbiol. 5:107

    PubMed  PubMed Central  Google Scholar 

  34. Fedorak PM, Coy DL, Dudas MJ, Simpson MJ, Renneberg AJ, MacKinnon MD (2003) Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J. Environ. Eng. Sci. 2:199–211

    Article  CAS  Google Scholar 

  35. Eckert WF, Masliyah JH, Gray MR, Fedorak PM (1996) Prediction of sedimentation and consolidation of fine tails. AICHE J. 42:960–972

    Article  CAS  Google Scholar 

  36. Kannel PR, Gan TY (2012) Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review. J Environ Sci Health, Part A 47:1–21

    Article  CAS  Google Scholar 

  37. Chi Fru E, Chen M, Walshe G, Penner T, Weisener C (2013) Bioreactor studies predict whole microbial population dynamics in oil sands tailings ponds. Appl. Microbiol. Biotechnol. 97:3215–3224

    Article  PubMed  Google Scholar 

  38. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  39. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:9

    Google Scholar 

  40. Stasik S, Wendt-Potthoff K (2014) Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. Chemosphere 103:59–66

    Article  CAS  PubMed  Google Scholar 

  41. Penner TJ, Foght JM (2010) Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can. J. Microbiol. 56:459–470

    Article  CAS  PubMed  Google Scholar 

  42. Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J. Ind. Microbiol. Biotechnol. 38:1761–1775

    Article  CAS  PubMed  Google Scholar 

  43. Bernardet JF, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. Prokaryotes 7:455–480

    Google Scholar 

  44. Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Tunlid A, Hagstrom A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16:867–880

    Article  CAS  PubMed  Google Scholar 

  45. Thomas F, Hehemann J, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front. Microbiol. 2:1–16

    Article  Google Scholar 

  46. Shirokova VL, Ferris FG (2013) Microbial diversity and biogeochemistry of a shallow pristine Canadian Shield groundwater system. Geomicrobiol J. 30:140–149

    Article  CAS  Google Scholar 

  47. Tian J, Lu J, Zhang Y, Li JC, Sun LC, Hu ZL (2014) Microbial community structures and dynamics in the O3/BAC drinking water treatment process. Int. J. Environ. Res. Public Health 11:6281–6290

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stakebrandt E (2006) Introduction to the proteobacteria. Prokaryotes 5:3–37

    Google Scholar 

  49. Bowman DD (2011) Introduction to the alpha-proteobacteria: Wolbachia and Bartonella, Rickettsia, Brucella, Ehrlichia, and Anaplasma. Top Companion Anim Med 26:173–177

    Article  PubMed  Google Scholar 

  50. Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiol 157:1551–1564

    Article  CAS  Google Scholar 

  51. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70:1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bernardet JF, Bowman JP (2006) The genus Flavobacterium. Prokaryotes 7:481–531

    Google Scholar 

  53. An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S, et al. (2013) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome 56:612–618

    Article  CAS  PubMed  Google Scholar 

  54. Reeburgh WS (1983) Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11:269–298

    Article  CAS  Google Scholar 

  55. Stasik S, Loick N, Knӧller K, Weisener C, Wendt-Potthoff K (2014) Understanding biogeochemical gradients of sulfur, iron and carbon in an oil sands tailings pond. Chem. Geol. 382:44–53

    Article  CAS  Google Scholar 

  56. Golby S, Ceri H, Gieg LM, Chatterjee I, Marques LLR, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol. Ecol. 79:240–250

    Article  CAS  PubMed  Google Scholar 

  57. Ahmed AW, Alzubaidi FS, Hamza SJ (2014) Biodegradation of crude oil in contaminated water by local isolates of Enterobacter cloacae. Iraqi J Sci 55:1025–1033

    Google Scholar 

  58. Khorasani AC, Mashreghi M, Yaghmaei S (2013) Study on biodegradation of Mazut by newly isolated strain Enterobacter cloacae BBRC10061: improving and kinetic investigation. Iranian J Environ Health Sci Eng 10:1–7

    Article  Google Scholar 

  59. Razika B, Abbes B, Messaoud C, Soufi K (2010) Phenol and benzoic acid degradation by Pseudomonas aeruginosa. JWARP 2:788–791

    Article  CAS  Google Scholar 

  60. Mahiudddin MD, Fakhruddin ANM, Abdullah-Al-Mahin (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol 2012:1–6

    Article  Google Scholar 

  61. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, et al. (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl. Environ. Microbiol. 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson RJ, Smith BE, Sutton PA, McGenity TJ, Rowland SJ, Whitby C (2011) Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5:486–496

    Article  CAS  PubMed  Google Scholar 

  63. Ma J, Xu L, Jia L (2012) Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant. J. Environ. Sci. 24:2141–2148

    Article  CAS  Google Scholar 

  64. Chistoserdova L, Kalyuzhnaya M, Lidstrom M (2009) The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol. 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49:545–556

    Article  CAS  PubMed  Google Scholar 

  66. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64:3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan B, Nesbø C, Foght J (2014) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8:2353–2356

    Article  PubMed  PubMed Central  Google Scholar 

  68. Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752–3759

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Butler JE, He Q, Nevin KP, He Z, Zhou J, Lovley DR (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8:180

    Article  PubMed  PubMed Central  Google Scholar 

  70. Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam. 11:339–357

    Article  CAS  Google Scholar 

  71. Byrne-Bailey KG, Weber KA, Chair AH, Bose S, Knox T, Spanbauer TL, et al. (2010) Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J. Bacteriol. 192:1475–1476

    Article  CAS  PubMed  Google Scholar 

  72. Taft S (2009) Identification and analysis of genes involved in anaerobic nitrate-dependent iron oxidation. Dissertation. Retrieved from ProQuest Dissertations and Theses. (Accession Order No. AAT 3372571)

  73. Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated. J. Gen. Appl. Microbiol. 308:299–308

    Article  Google Scholar 

  74. Klankeo P, Nopcharoenkul W, Pinyakong O (2009) Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. J. Biosci. Bioeng. 108:488–495

    Article  CAS  PubMed  Google Scholar 

  75. Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl. Environ. Microbiol. 78:7042–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hersikorn BD, Ciborowski JJH, Smits JEG (2010) The effects of oil sands wetlands on wood frogs (Rana sylvatica). Toxicol. Environ. Chem. 92:1513–1527

    Article  CAS  Google Scholar 

  77. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110:3–12

    Article  CAS  PubMed  Google Scholar 

  78. Lovley DR (2002) Dissimilatory metal reduction: from early life to bioremediation. ASM News 68:231–237

    Google Scholar 

  79. Zhang L, Zhang Q, Luo X, Tang Y, Dai J, Li Y, et al. (2008) Pontibacter korlensis sp. nov., isolated from the desert of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 58:1210–1214

    Article  CAS  PubMed  Google Scholar 

  80. Xu L, Zeng XC, Nie Y, Luo X, Zhou E, Zhou L, et al. (2014) Pontibacter diazotrophicus sp. Nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae. PLoS One 9:e92294

    Article  PubMed  PubMed Central  Google Scholar 

  81. Singh AK, Garg N, Lata P, Kumar R, Negi V, Vikram S, Lal R (2014) Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int. J. Syst. Evol. Microbiol. 64:254–259

    Article  CAS  PubMed  Google Scholar 

  82. Nedashkovskaya OI, Bum Kim S, Suzuki M, Shevchenko LS, Sook Lee M, Hyun Lee K, et al. (2005) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachiella Nedashkovskaya et al 2003. Int. J. Syst. Evol. Microbiol. 55:2583–2588

    Article  CAS  PubMed  Google Scholar 

  83. Joshi MN, Sharma AC, Pandya RV, Patel RP, Saiyed ZM, Saxena AK, Bagatharia SB (2012) Draft genome sequence of Pontibacter sp. nov. BAB1700, a halotolerant, industrially important bacterium. J. Bacteriol. 194:6329–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rabus R, Hansen T, Widdel F (2004) The prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlang New York, LLC

  85. Barlett M, Zhuang K, Mahadevan R, Lovley D (2012) Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation. Biogeosciences 9:1033–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Suncor Energy Incorporated, Syncrude Canada Limited, Total E & P., Shell Canada, Imperial Oil Resources, and Canadian Natural Resources Limited for funding support and cooperation to make this research project possible. We thank Robert Pasuta (McMaster University Nuclear Reactor Supervisor) for providing off-site research facilities and logistical support for the GI treatments. We thank former Suncor technical program manager, Christine Daly, for her support and encouragement during early stages of the program, as well as Joshua Martin who is the current program coordinator for the industrial partners. We also thank collaborative reviewers for their constructive comments throughout the process of creating this manuscript. Research funding provided by grants from the Natural Sciences and Engineering Council of Canada (NSERC) Discovery program and CEMA-NSERC Collaborative Research and Development grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle VanMensel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanMensel, D., Chaganti, S.R., Boudens, R. et al. Investigating the Microbial Degradation Potential in Oil Sands Fluid Fine Tailings Using Gamma Irradiation: A Metagenomic Perspective. Microb Ecol 74, 362–372 (2017). https://doi.org/10.1007/s00248-017-0953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0953-7

Keywords

Navigation