Microbial Ecology

, Volume 74, Issue 1, pp 239–249 | Cite as

Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development

  • Xinghao Li
  • Li Zhou
  • Yuhe Yu
  • Jiajia Ni
  • Wenjie Xu
  • Qingyun Yan
Host Microbe Interactions

Abstract

To understand how a bacteria-free fish gut ecosystem develops microbiota as the fish ages, we performed a 1-year study on the gut microbiota of hatchling gibel carp (Carassius auratus gibelio). Our results indicate that the gut microbial diversity increases significantly as the fish develop. The gut microbial community composition showed significant shifts corresponding to host age and appeared to shift at two time points despite consistent diet and environmental conditions, suggesting that some features of the gut microbial community may be determined by the host’s development. Dietary and environmental changes also seem to cause significant shifts in the fish gut microbial community. This study revealed that the gut microbiota of gibel carp assemble into distinct communities at different times during the host’s development and that this process is less affected by the surrounding environment than by the host diet and development. Community phylogenetic analyses based on the net relatedness index further showed that environmental filtering (host selection) deterministically governs the gut microbial community composition. More importantly, the influence of host-associated deterministic filtering tends to weaken significantly over the course of the host’s development. However, further studies are needed to assess whether this host development-dependent shift in gut microbiota will still exist under different rearing strategies.

Keywords

Gut microbiota High-throughput sequencing 16S rRNA gene Gibel carp Phylogenetic diversity Net relatedness index 

Notes

Acknowledgements

The authors gratefully acknowledge Ellie Lin for help with English. This work was supported by the National Natural Science Foundation of China (Nos. 31400109, 31372202, and 31500417) and the Guangdong Natural Science Foundation (No. 2014A030310281).

Supplementary material

248_2016_924_MOESM1_ESM.docx (740 kb)
Fig. S1(DOCX 739 kb)
248_2016_924_MOESM2_ESM.docx (562 kb)
Fig. S2(DOCX 562 kb)
248_2016_924_MOESM3_ESM.docx (321 kb)
Fig. S3(DOCX 321 kb)
248_2016_924_MOESM4_ESM.docx (360 kb)
Fig. S4(DOCX 360 kb)
248_2016_924_MOESM5_ESM.docx (2 mb)
Fig. S5(DOCX 2054 kb)
248_2016_924_MOESM6_ESM.docx (980 kb)
Fig. S6(DOCX 980 kb)
248_2016_924_MOESM7_ESM.docx (988 kb)
Fig. S7(DOCX 987 kb)
248_2016_924_MOESM8_ESM.docx (22 kb)
Table S1(DOCX 21 kb)
248_2016_924_MOESM9_ESM.docx (33 kb)
Table S2(DOCX 33 kb)

References

  1. 1.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267CrossRefPubMedGoogle Scholar
  2. 2.
    Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580CrossRefPubMedGoogle Scholar
  3. 3.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bakke I, Coward E, Andersen T, Vadstein O (2015) Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua). Environ Microbiol 17:3914–3924CrossRefPubMedGoogle Scholar
  6. 6.
    Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386CrossRefPubMedGoogle Scholar
  7. 7.
    Li XM, Yu YH, Feng WS, Yan QY, Gong YC (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol 50:29–37CrossRefPubMedGoogle Scholar
  8. 8.
    Yang RB, Xie CX, Fan QX, Gao C, Fang LB (2010) Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture 302:112–123CrossRefGoogle Scholar
  9. 9.
    He T, Xiao ZZ, Liu QH, Ma DY, Xu SH, Xiao YS, Li J (2012) Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol Biochem 38:297–308CrossRefPubMedGoogle Scholar
  10. 10.
    Fjellheim AJ, Playfoot KJ, Skjermo J, Vadstein O (2012) Inter-individual variation in the dominant intestinal microbiota of reared Atlantic cod (Gadus morhua L.) larvae. Aquac Res 43:1499–1508CrossRefGoogle Scholar
  11. 11.
    Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654CrossRefPubMedGoogle Scholar
  12. 12.
    Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945CrossRefGoogle Scholar
  13. 13.
    Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, Kempher ML, Wu L, Wang Y, Liao L, Li X, Wu S, Ni J, Wang C, Zhou J (2016) Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ MicrobiolGoogle Scholar
  14. 14.
    Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight ROB, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378CrossRefPubMedGoogle Scholar
  17. 17.
    Sullam KE, Rubin BER, Dalton CM, Kilham SS, Flecker AS, Russell JA (2015) Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J 9:1508–1522CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wong SD, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21:3100–3102CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yan QY, Van der Gast CJ, Yu YH (2012) Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS One 7:e30603CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bakke I, Skjermo J, Vo TA, Vadstein O (2013) Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua). Environ Microbiol Rep 5:537–548CrossRefPubMedGoogle Scholar
  21. 21.
    Fishery Bureau of the Ministry of Agriculture (2014) China fishery statistical yearbook. China Agriculture Press, BeijingGoogle Scholar
  22. 22.
    Gui JF, Liang SC (1999) Allogynogenetic silver crucian carp. In: Wu CJ, Gui JF (eds) Fish genetics and breeding engineering. Shanghai Scientific & Technical Publishers, ShanghaiGoogle Scholar
  23. 23.
    Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551CrossRefPubMedGoogle Scholar
  24. 24.
    Li TT, Long M, Gatesoupe FJ, Zhang QQ, Li AH, Gong XN (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69:25–36CrossRefPubMedGoogle Scholar
  25. 25.
    Yan Q, Bi Y, Deng Y, He ZL, Wu LY, Van Nostrand JD, Shi Z, Li JJ, Wang X, Hu ZY, Yu YH, Zhou JH (2015) Impacts of the Three Gorges Dam on microbial structure and potential function. Sci Rep-Uk 5Google Scholar
  26. 26.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biol 12:69CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137CrossRefGoogle Scholar
  29. 29.
    Wu LY, Wen CQ, Qin YJ, Yin HQ, Tu QC, Van Nostrand JD, Yuan T, Yuan MT, Deng Y, Zhou JZ (2015) Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 15Google Scholar
  30. 30.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996CrossRefPubMedGoogle Scholar
  31. 31.
    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefPubMedGoogle Scholar
  33. 33.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  35. 35.
    Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960CrossRefPubMedGoogle Scholar
  36. 36.
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  37. 37.
    Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  38. 38.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8Google Scholar
  39. 39.
    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  40. 40.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wanger H (2016) vegan: Community Ecology PackageGoogle Scholar
  41. 41.
    Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  42. 42.
    Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34:28–35PubMedGoogle Scholar
  43. 43.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  44. 44.
    O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341:44CrossRefGoogle Scholar
  47. 47.
    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R (2011) Moving pictures of the human microbiome. Genome Biol 12:R50CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu SG, Tian JY, Gatesoupe FJ, Li WX, Zou H, Yang BJ, Wang GT (2013) Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol 29:1585–1595CrossRefPubMedGoogle Scholar
  50. 50.
    Li J, Ni J, Li J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117:1750–1760CrossRefPubMedGoogle Scholar
  51. 51.
    Ni JJ, Yan QY, Yu YH, Zhang TL (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87:704–714CrossRefPubMedGoogle Scholar
  52. 52.
    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664CrossRefPubMedGoogle Scholar
  53. 53.
    Li Q (2007) The study on intestinal histology and developing regulation of nutrients of allogynogenetic Crucian. Nanjing Agricultural UniversityGoogle Scholar
  54. 54.
    Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573CrossRefGoogle Scholar
  55. 55.
    Li XM, Yan QY, Xie SQ, Hu W, Yu YH, Hu ZH (2013) Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). Plos One 8Google Scholar
  56. 56.
    DeLong EF (2014) Alien invasions and gut “island biogeography”. Cell 159:233–235CrossRefPubMedGoogle Scholar
  57. 57.
    De Schryver P, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8:2360–2368CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xinghao Li
    • 1
    • 2
  • Li Zhou
    • 1
  • Yuhe Yu
    • 1
  • Jiajia Ni
    • 3
    • 4
  • Wenjie Xu
    • 1
    • 2
  • Qingyun Yan
    • 1
    • 5
  1. 1.Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, and State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Guangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Institute of MicrobiologyGuangzhouChina
  4. 4.State Key Laboratory of Applied Microbiology Southern ChinaGuangzhouChina
  5. 5.Environmental Microbiome Research Center, School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations