Advertisement

Microbial Ecology

, Volume 74, Issue 1, pp 54–61 | Cite as

Fungal Endophytes: an Alternative Source for Production of Volatile Compounds from Agarwood Oil of Aquilaria subintegra

  • Sakon Monggoot
  • Siam Popluechai
  • Eleni Gentekaki
  • Patcharee Pripdeevech
Fungal Microbiology

Abstract

Fungal endophytes are microorganisms that are well-known for producing a diverse array of secondary metabolites. Recent studies have uncovered the bioprospecting potential of several plant endophytic fungi. Here, we demonstrate the presence of highly bioactive fungal endophytic species in Aquilaria subintegra, a fragrant wood plant collected from Thailand. Thirty-three fungal endophytic strains were isolated and further identified to genus level based on morphological characteristics. These genera included Colletotrichum, Pestalotiopsis, Fusarium, Russula, Arthrinium, Diaporthe and Cladosporium. All strains were cultured on potato dextrose broth for 30 days prior to partitioning with ethyl acetate. The volatile compounds of all extracts were investigated by gas chromatography-mass spectrometry (GC-MS). Four strains—Arthrinium sp. MFLUCC16–0042, Colletotrichum sp. MFLUCC16-0047, Colletotrichum sp. MFLUCC16-0048 and Diaporthe sp. MFLUCC16-0051—produced a broad spectrum of volatile compounds, including β-agarofuran, α-agarofuran, δ-eudesmol, oxo-agarospirol, and β-dihydro agarofuran. These compounds are especially important, because they greatly resemble those originating from the host-produced agarwood oil. Our findings demonstrate the potential of endophytic fungi to produce bioactive compounds with applications in perfumery and cosmetic industries. Antioxidant activity of all extracts was also evaluated by using 2,2-diphenyl-2-picrylhydrazyl radical scavenging assays. The ethyl acetate extract of Diaporthe sp. MFLUCC16-0051 demonstrated superior antioxidant capacity, which was comparable to that of the gallic acid standard. Our results indicate that the MFLUCC16-0051 strain is a resource of natural antioxidant with potential medicinal applications.

Keywords

Aquilaria subintegra Oxo-agarospirol Agarofuran Agarwood oil Diaporthe Endophytic fungi 

Notes

Acknowledgements

The authors acknowledge the financial support from Mae Fah Luang University. We are grateful to the Scientific and Technological Instruments Center and Tea Institute, Mae Fah Luang University for a PhD Research instruments and reagents. The authors wish to acknowledge Dr. Putarak Chomnunti and Dr. Saranyaphat Boonmee, of the Institute of Excellence in Fungal Research, School of Science, Mae Fah Luang University who provided assistance towards the success of this research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yoswathana N (2013) Extraction of agarwood (Aquilaria crassna) oil by using supercritical carbon dioxide extraction and enzyme pretreatment on hydrodistillation. J Food Agric Environ 11:1055–1059Google Scholar
  2. 2.
    Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 14:227–242. doi: 10.1186/1471-2164-14-227 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Akter S, Islam MT, Zulkefeli M, Khan SI (2013) Agarwood production-a multidisciplinary field to be explored in Bangladesh. IJPLS 2:22–32. doi: 10.3329/ijpls.v2i1.15132 Google Scholar
  4. 4.
    Naef R (2011) The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Fla Fragr J 26:73–87. doi: 10.1002/ffj.2034 CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Wei J, Han X, Liang L, Yang Y, Meng H, Xu Y, Gao Z (2014) The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis (Lour.) Gilg trees induced by wounding treatments without variation of microbial communities. Int. J. Mol. Sci. 15:23589–23603. doi: 10.3390/ijms151223589 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pripdeevech P, Khummueng W, Park SK (2011) Identification of odor-active components of agarwood essential oils from Thailand by solid phase microextraction-GC/MS and GC-O. J. Essent. Oil Res. 23:46–53. doi: 10.1080/10412905.2011.9700468 CrossRefGoogle Scholar
  7. 7.
    Kakino M, Tazawa S, Maruyama H, Tsuruma K, Araki Y, Shimazawa M, Hara H (2010) Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complement. Altern. Med. 10:68–75. doi: 10.1186/1472-6882-10-68 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Current research, technology and education topics in applied microbiology and microbial biotechnology 1:567–576Google Scholar
  9. 9.
    Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 41:1–16. doi: 10.1007/s13225-010-0034-4 CrossRefGoogle Scholar
  10. 10.
    Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 160(S4):S99–S127CrossRefPubMedGoogle Scholar
  11. 11.
    Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. Microbial endophytes 3:29–33Google Scholar
  12. 12.
    Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. MPMI 26:835–843. doi: 10.1094/MPMI-10-12-0249-CR CrossRefPubMedGoogle Scholar
  13. 13.
    Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J. Nat. Prod. 67:257–268. doi: 10.1021/np030397v CrossRefPubMedGoogle Scholar
  14. 14.
    Schaible GA, Strobel GA, Mends MT, Geary B, Sears J (2015) Characterization of an endophytic Gloeosporium sp. and its novel bioactivity with “synergistans”. Microb. Ecol. 70:41–50. doi: 10.1007/s00248-014-0542-y CrossRefPubMedGoogle Scholar
  15. 15.
    Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur. J. Org. Chem. 19:3976–3980. doi: 10.1002/ejoc.201402262 CrossRefGoogle Scholar
  16. 16.
    Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. African J Microbiol Res 4:1346–1351Google Scholar
  17. 17.
    Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol. Lett. 320:87–94. doi: 10.1111/j.1574-6968.2011.02297.x CrossRefPubMedGoogle Scholar
  18. 18.
    Mends MT, Yu E, Strobel GA, Riyaz-Ul-Hassan S, Booth E, Geary B, Sears J, Taatjes CA, Hadi MZ (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Phylogenetics Evol Biol 3:117–123. doi: 10.4172/2157-7463.1000117 Google Scholar
  19. 19.
    Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod. 69:509–526. doi: 10.1021/np058128n CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. doi: 10.1017/S0953756202006342
  21. 21.
    Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 4:1511–1532PubMedGoogle Scholar
  22. 22.
    Dugan FM (2006) The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. American Phytopathological Society, Minnesota, pp. 1–176Google Scholar
  23. 23.
    Pripdeevech P, Machan T (2011) Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand. Food Chem. 125:797–802. doi: 10.1016/j.foodchem.2010.09.074 CrossRefGoogle Scholar
  24. 24.
    Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi: 10.1093/bioinformatics/btq224 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2008) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348 CrossRefGoogle Scholar
  27. 27.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  28. 28.
    Schoch CL, Robbertse B, Robert V et al. (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database (Oxford):1–21. doi: 10.1093/database/bau061
  29. 29.
    Ronquist F, Huelsenbeck JP (2003) MrBayes3, Bayesian inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  30. 30.
    Miller MA, Pfeiffer W, Schwartz T (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp 1–8Google Scholar
  31. 31.
    Shu-Yuan Q (1995) Aquilaria species: in vitro culture and the production eaglewood (agarwood). Springer, Medicinal and Aromatic Plants VIII, pp. 36–46Google Scholar
  32. 32.
    Nakanishi T, Yamagata E, Yoneda K, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I (1984) Three fragrant sesquiterpenes of agarwood. Phytochemistry 23:2066–2067. doi: 10.1016/S0031-9422(00)84975-4 CrossRefGoogle Scholar
  33. 33.
    Wong YF, Chin ST, Perlmutter P, Marriott PJ (2015) Evaluation of comprehensive two-dimensional gas chromatography with accurate mass time-of-flight mass spectrometry for the metabolic profiling of plant–fungus interaction in Aquilaria malaccensis. J. Chromatogr. A 1387:104–115. doi: 10.1016/j.chroma.2015.01.096 CrossRefPubMedGoogle Scholar
  34. 34.
    Ismail N, Azah MAN, Jamil M, Rahiman MHF, Tajuddin SN, Taib MN (2013) Analysis of high quality agarwood oil chemical compounds by means of SPME/GC-MS and Z-score technique. Malaysian J Anal Sci 17:403–413Google Scholar
  35. 35.
    Takemoto H, Ito M, Shiraki T, Yagura T, Honda G (2008) Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J. Nat. Med. 62:41–46. doi: 10.1007/s11418-007-0177-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. That produces azadirachtin. World J. Microbiol. Biotechnol. 28:1287–1294. doi: 10.1007/s11274-011-0876-2 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr. Biol. 21:R242–R246. doi: 10.1016/j.cub.2011.01.045 CrossRefPubMedGoogle Scholar
  38. 38.
    Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893. doi: 10.1016/j.phytochem.2009.05.020 CrossRefPubMedGoogle Scholar
  39. 39.
    Singh G, Maurya S, Catalan C, De Lampasona M (2005) Studies on essential oils, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flav Fragr J 20:1–6. doi: 10.1002/ffj.1373 CrossRefGoogle Scholar
  40. 40.
    Pripdeevech P, Chukeatirote E (2010) Chemical compositions, antifungal and antioxidant activities of essential oil and various extracts of Melodorum fruticosum L. flowers. Food Chem. Toxicol. 48:2754–2758. doi: 10.1016/j.fct.2010.07.002 CrossRefPubMedGoogle Scholar
  41. 41.
    Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91:621–632CrossRefGoogle Scholar
  42. 42.
    Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, IllinoisGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sakon Monggoot
    • 1
  • Siam Popluechai
    • 1
  • Eleni Gentekaki
    • 1
  • Patcharee Pripdeevech
    • 1
  1. 1.School of ScienceMae Fah Luang UniversityChiang RaiThailand

Personalised recommendations