Microbial Ecology

, Volume 72, Issue 3, pp 659–668 | Cite as

Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space

  • Varsik Martirosyan
  • Adrian Unc
  • Gad Miller
  • Tirza Doniger
  • Chaim Wachtel
  • Yosef Steinberger
Plant Microbe Interactions

Abstract

Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a “temporary host” and the biotic-community parameters in extreme xeric environments.

Keywords

Desert ecosystem Microbial diversity Next-generation sequencing Phyllosphere Plant ecophysiological adaptation 

Supplementary material

248_2016_822_MOESM1_ESM.docx (43 kb)
ESM 1(DOCX 43 kb)
248_2016_822_MOESM2_ESM.docx (19 kb)
ESM 2(DOCX 18 kb)

References

  1. 1.
    Offer ZY, Steinberger Y (1994) Some data on elemental composition of airborne particulate matter in the northern Negev Desert, Israel. Environ Conserv 21:342–346CrossRefGoogle Scholar
  2. 2.
    Acosta-Martinez V, Van Pelt S, Moore-Kucera J, Baddock MC, Zobeck TM (2015) Microbiology of wind-eroded sediments: current knowledge and future research directions. Aeolian Res 18:99–113CrossRefGoogle Scholar
  3. 3.
    Zaady E, Ben-David EA, Sher Y, Tzirkin R, Nejidat A (2010) Inferring biological soil crust successional stage using combined PLFA, DGGE, physical and biophysiological analyses. Soil Biol Biochem 42:842–849. doi:10.1016/j.soilbio.2010.02.002 CrossRefGoogle Scholar
  4. 4.
    Goudie AS (2014) Desert dust and human health disorders. Environ Int 63:101–113CrossRefPubMedGoogle Scholar
  5. 5.
    Fedorov DN, Doronina NV, Trotsenko YA (2011) Phytosymbiosis of aerobic methylobacteria: new facts and views. Microbiology 80:443–454CrossRefGoogle Scholar
  6. 6.
    Reed SC, Townsend AR, Cleveland CC, Nemergut DR (2010) Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia 164:521–531CrossRefPubMedGoogle Scholar
  7. 7.
    Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840CrossRefPubMedGoogle Scholar
  8. 8.
    Beattie GA, Lindow SE (1994) Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol 60:3799–3808PubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilson M, Hirano SS, Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol 65:1435–1443PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760. doi:10.1128/AEM.00040-09 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Evenari ME, Shanan L, Tadmor W (1982) The Negev: the challenge of a desert, 2nd edn. Harvard University Press, Cambridge, p 345CrossRefGoogle Scholar
  12. 12.
    Guenaoui C, Gorai M, Smiti S, Neffati M (2008) Biochemical and physiological changes in Artemisia herba-alba plants under water stress conditions. Middle-East J Sci Res 3:156–163Google Scholar
  13. 13.
    Martirosyan V, Steinberger Y (2014) Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. J Arid Environ 107:26–33. doi:10.1016/j.jaridenv.2014.04.002 CrossRefGoogle Scholar
  14. 14.
    Whitford WG (2002) Ecology of desert systems. Academic Press, New York, p 343Google Scholar
  15. 15.
    Qvit-Raz N, Jurkevitch E, Belkin S (2008) Drop-size soda lakes: transient microbial habitats on a salt-secreting desert tree. Genetics 178:1615–1622. doi:10.1534/genetics.107.082164 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655. doi:10.1128/aem.05565-11 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl Environ Microbiol 78:6187–6193CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17CrossRefPubMedGoogle Scholar
  19. 19.
    Bowers RM, Sullivan AP, Costello EK, Collett JL, Knight R, Fierer N (2011) Sources of bacteria in outdoor air across cities in the Midwestern United States. Appl Environ Microbiol 77:6350–6356. doi:10.1128/Aem.05498-11 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu YT, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352CrossRefPubMedGoogle Scholar
  22. 22.
    Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216. doi:10.3389/fpls.2014.00216 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Barriuso J, Valverde JR, Mellado RP (2011) Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows. BMC Bioinformatics 12:473. doi:10.1186/1471-2105-12-473 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol Ecol 20:275–285CrossRefPubMedGoogle Scholar
  25. 25.
    Guo SZ, Lu ZM, Kang GY, Chen Z, Luo H (2012) A tree-structured deterministic small-world network. IEICE Trans Inform Syst E95d:1536–1538. doi:10.1587/transinf.E95.D.1536 CrossRefGoogle Scholar
  26. 26.
    Martirosyan V, Steinberger Y, Doniger T, Wachtel C, Miller G (2014) Structural and functional microbial diversity determined by shrubs ecophysiological adaptation in the Negev Desert. The 99th Annual Meeting of the Ecological Society of America, August 10–15, 2014, Sacramento, CAGoogle Scholar
  27. 27.
    Barness G, Zaragoza S, Shmueli I, Steinberger Y (2009) Vertical distribution of a soil microbial community as affected by plant ecophysiological adaptation in a desert system. Microb Ecol 57:36–49. doi:10.1007/s00248-008-9396-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Berg N, Steinberger Y (2008) Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biol Biochem 40:2686–2695. doi:10.1016/j.soilbio.2008.07.019 CrossRefGoogle Scholar
  29. 29.
    Mohamed AEHH, El-Sayed MA, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS (2010) Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod 4:1–25Google Scholar
  30. 30.
    Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9CrossRefGoogle Scholar
  31. 31.
    Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M (2012) Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE 7:e42671CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  33. 33.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  34. 34.
    Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9:e90234CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107 CrossRefPubMedGoogle Scholar
  36. 36.
    Knight R, Maxwell P, Birmingham A, Carnes J, Caporaso JG, Easton BC, Eaton M, Hamady M, Lindsay H, Liu ZZ, Lozupone C, McDonald D, Robeson M, Sammut R, Smit S, Wakefield MJ, Widmann J, Wikman S, Wilson S, Ying H, Huttley GA (2007) PyCogent: a toolkit for making sense from sequence. Genome Biol 8:R171CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618CrossRefPubMedGoogle Scholar
  38. 38.
    Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Luecking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schuessler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefPubMedGoogle Scholar
  39. 39.
    Berg N, Steinberger Y (2010) Are biological effects of desert shrubs more important than physical effects on soil microorganisms? Microb Ecol 59:121–129. doi:10.1007/s00248-009-9599-4 CrossRefPubMedGoogle Scholar
  40. 40.
    Schrempf H (2013) Actinobacteria within soils: capacities for mutualism, symbiosis and pathogenesis. FEMS Microbiol Lett 342:77–78CrossRefPubMedGoogle Scholar
  41. 41.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefPubMedGoogle Scholar
  42. 42.
    Bachar A, Soares MIM, Gillor O (2012) The effect of resource islands on abundance and diversity of bacteria in arid soils. Microb Ecol 63:694–700CrossRefPubMedGoogle Scholar
  43. 43.
    Yu J, Grishkan I, Steinberger Y (2013) Microfungal-community diversity in Zygophyllum dumosum and Hammada scoparia root zones in the northern Negev Desert. J Basic Microbiol 53:390–400CrossRefPubMedGoogle Scholar
  44. 44.
    Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224CrossRefPubMedGoogle Scholar
  45. 45.
    Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20CrossRefGoogle Scholar
  46. 46.
    Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fahlgren C, Hagstrom A, Nilsson D, Zweifel UL (2010) Annual variations in the diversity, viability, and origin of airborne bacteria. Appl Environ Microbiol 76:3015–3025CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microb Ecol 64:714–724CrossRefPubMedGoogle Scholar
  50. 50.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim SK, Gignoux CR, Wall JD, Lum-Jones A, Wang HS, Haiman CA, Chen GK, Henderson BE, Kolonel LN, Le Marchand L, Stram DO, Saxena R, Cheng I (2012) Population genetic structure and origins of native Hawaiians in the multiethnic cohort study. PLoS ONE 7:e47881CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. doi:10.1038/Ismej.2010.9 CrossRefPubMedGoogle Scholar
  53. 53.
    van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296. doi:10.1111/j.1574-6941.2008.00469.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Varsik Martirosyan
    • 1
    • 2
  • Adrian Unc
    • 3
  • Gad Miller
    • 1
  • Tirza Doniger
    • 1
  • Chaim Wachtel
    • 1
  • Yosef Steinberger
    • 1
  1. 1.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  2. 2.Life Sciences International Postgraduate Educational CenterYerevanArmenia
  3. 3.Boreal Ecosystems Research InitiativeMemorial University of NewfoundlandCorner BrookCanada

Personalised recommendations