Advertisement

Microbial Ecology

, Volume 72, Issue 3, pp 704–716 | Cite as

Distribution of Prokaryotic Abundance and Microbial Nutrient Cycling Across a High-Alpine Altitudinal Gradient in the Austrian Central Alps is Affected by Vegetation, Temperature, and Soil Nutrients

  • Katrin Hofmann
  • Andrea Lamprecht
  • Harald Pauli
  • Paul Illmer
Soil Microbiology

Abstract

Studies of the altitudinal distributions of soil microorganisms are rare or have led to contradictory results. Therefore, we studied archaeal and bacterial abundance and microbial-mediated activities across an altitudinal gradient (2700 to 3500 m) on the southwestern slope of Mt. Schrankogel (Central Alps, Austria). Sampling sites distributed over the alpine (2700 to 2900 m), the alpine-nival (3000 to 3100 m), and the nival altitudinal belts (3200 to 3500 m), which are populated by characteristic plant assemblages. Bacterial and archaeal abundances were measured via quantitative real-time PCR (qPCR). Moreover, microbial biomass C, microbial activity (dehydrogenase), and enzymes involved in carbon (CM-cellulase), nitrogen (protease), phosphorus (alkaline phosphatase), and sulfur (arylsulfatase) cycling were determined. Abundances, microbial biomass C, and activities almost linearly decreased along the gradient. Archaeal abundance experienced a sharper decrease, thus pointing to pronounced sensitivity toward environmental harshness. Additionally, abundance and activities were significantly higher in soils of the alpine belt compared with those of the nival belt, whereas the alpine-nival ecotone represented a transitional area with intermediate values, thus highlighting the importance of vegetation. Archaeal abundance along the gradient was significantly related to soil temperature only, whereas bacterial abundance was significantly related to temperature and dissolved organic carbon (DOC). Soil carbon and nitrogen concentrations explained most of the variance in enzyme activities involved in the cycling of C, N, P, and S. Increasing temperature could therefore increase the abundances and activities of microorganisms either directly or indirectly via expansion of alpine vegetation to higher altitudes and increased plant cover.

Keywords

Alpine soil Altitudinal gradient Archaea Bacteria Nutrient cycling Quantitative PCR 

Notes

Acknowledgments

We thank S. Farbmacher, N. Praeg, and A. O. Wagner for their help with the field work. KH thanks M. Huber and P. Wischounig for helpful discussions about statistics. This study was supported by the Austrian Climate Research Program (Project GZ B368633).

Supplementary material

248_2016_803_MOESM1_ESM.docx (1.9 mb)
ESM 1 ᅟ (DOCX 1970 kb)

References

  1. 1.
    Körner C (2007) The use of altitude in ecological research. Trends Ecol Evol 22:569–574CrossRefPubMedGoogle Scholar
  2. 2.
    Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4CrossRefGoogle Scholar
  3. 3.
    Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zier (2005) Ecosystem service supply and vulnerability to global change in Europe. Sci 310:1333–1337CrossRefGoogle Scholar
  4. 4.
    Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Letters 8:224–239CrossRefGoogle Scholar
  5. 5.
    McCain CM, Grytnes JA (2010) Elevational gradient in species richness. In: Encyclopedia of life sciences. John Wiley & Sons Ltd, Chichester. doi: 10.1002/9780470015902.a0022548 Google Scholar
  6. 6.
    Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:05–11CrossRefGoogle Scholar
  7. 7.
    Wang JT, Cao P, Hu HW, Li J, Han LL, Zhang LM, Zheng YM, He JZ (2015) Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb Ecol 69:135–145CrossRefPubMedGoogle Scholar
  8. 8.
    Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecol 92:797–804CrossRefGoogle Scholar
  9. 9.
    Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J (2011) Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr 38:595–603CrossRefGoogle Scholar
  10. 10.
    Singh D, Takahashi K, Kim M, Chun J, Adams JM (2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb Ecol 63:429–437CrossRefPubMedGoogle Scholar
  11. 11.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem Rev 8:505–518CrossRefGoogle Scholar
  14. 14.
    Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797CrossRefPubMedGoogle Scholar
  15. 15.
    Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217CrossRefGoogle Scholar
  17. 17.
    Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal. and fungal communities along an altitudinal gradient in alpine forest soil: what are the driving factors? Microb Ecol. doi: 10.1007/s00248-016-0748-2 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci U S A 108:4170–4175CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang L-M, Offre PR, He J-Z, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil Thaumarchaeota. Proc Natl Acad Sci U S A 107:17240–17245CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berg IA, Kockelhorn D, Ramon-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460CrossRefPubMedGoogle Scholar
  23. 23.
    Hofmann K, Reitschuler C, Illmer P (2013) Aerobic and anaerobic microbial activities in the foreland of a receding glacier. Soil Biol Biochem 57:418–426CrossRefGoogle Scholar
  24. 24.
    Prem E, Reitschuler C, Illmer P (2014) Livestock grazing on Alpine soils causes changes in abiotic and biotic soil properties and thus in abundance and activity of methanogenic Archaea. Eur J Soil Biol 62:22–29CrossRefGoogle Scholar
  25. 25.
    Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2010) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hofmann K, Illmer P (2015) Temporal patterns of prokaryotic abundance, community structure and microbial activity in glacier foreland soils. Antonie Van Leeuwenhoek 108:793–799CrossRefPubMedGoogle Scholar
  27. 27.
    He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic Thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154CrossRefGoogle Scholar
  28. 28.
    Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013—the physical science basis (contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801CrossRefGoogle Scholar
  30. 30.
    Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Climate 16:206–223CrossRefGoogle Scholar
  31. 31.
    Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life—the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325CrossRefGoogle Scholar
  32. 32.
    Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156CrossRefGoogle Scholar
  33. 33.
    Djukic I, Zehetner F, Mentler A, Gerzabek MH (2010) Microbial community composition and activity in different Alpine vegetation zones. Soil Biol Biochem 42:155–161CrossRefGoogle Scholar
  34. 34.
    Djukic I, Zehetner F, Watzinger A, Horacek M, Gerzabek M (2013) In situ carbon turnover dynamics and the role of soil microorganisms therein: a climate warming study in an Alpine ecosystem. FEMS Microbiol Ecol 83:112–124CrossRefPubMedGoogle Scholar
  35. 35.
    Bradford MA (2013) Thermal adaptation of decomposer communities in warming soils. Front Microbio 4:333. doi: 10.3389/fmicb.2013.00333 CrossRefGoogle Scholar
  36. 36.
    Hammer W (1929) Der granitische Kern der Stubaier Gruppe und seine Beziehungen zum Bau der Ötztaler Alpen. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt 79:87–128Google Scholar
  37. 37.
    Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic Alpine Res 30:207–221CrossRefGoogle Scholar
  38. 38.
    Gottfried M, Pauli H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Divers Distrib 5:241–251CrossRefGoogle Scholar
  39. 39.
    Schinner F, Öhlinger R, Kandeler E, Margesin R (1996) Methods in soil biology. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  40. 40.
    Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195CrossRefGoogle Scholar
  41. 41.
    Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  42. 42.
    Yu Y, Lee C, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679CrossRefPubMedGoogle Scholar
  43. 43.
    Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microb 71:4117–4120CrossRefGoogle Scholar
  44. 44.
    Quinn GP, Keough MJ (2011) Experimental design and data analysis for biologists., p 11Google Scholar
  45. 45.
    Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218CrossRefPubMedGoogle Scholar
  46. 46.
    Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4:1133–1153CrossRefGoogle Scholar
  47. 47.
    Kemnitz D, Kolb S, Conrad R (2007) High abundance of Crenarchaeota ina temperate acidic forest soil. FEMS Microbiol Ecol 60:442–448CrossRefPubMedGoogle Scholar
  48. 48.
    Lucas RW, Casper BB, Jackson JK (2007) Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biol Biochem 39:2508–2519CrossRefGoogle Scholar
  49. 49.
    Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407CrossRefPubMedGoogle Scholar
  50. 50.
    Ottow JCG (2011) Mikrobiologie von Böden. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  51. 51.
    Schinner F (1982) Soil microbial activities and litter decomposition related to altitude. Plant Soil 65:87–94CrossRefGoogle Scholar
  52. 52.
    Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178CrossRefGoogle Scholar
  53. 53.
    Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316CrossRefPubMedGoogle Scholar
  54. 54.
    Burns RG, Dick RP (2002) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New YorkCrossRefGoogle Scholar
  55. 55.
    Xu Z, Yu G, Zhang X, Ge J, He N, Wang Q, Wang D (2014) The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter ecomposition along the northern slope of Changbai Mountain. Appl Soil Ecol 86:19–29CrossRefGoogle Scholar
  56. 56.
    Siles JA, Cajthaml T, Minerbi S, Margesin R (2016) Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 92:1–12CrossRefGoogle Scholar
  57. 57.
    Stursova M, Baldrian P (2011) Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338:99–110CrossRefGoogle Scholar
  58. 58.
    Wallenius K, Rita H, Mikkonen A, Lappi K, Lindström K, Hartikainen H, Raateland A, Niemi RM (2011) Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biol Biochem 43:1464–1473CrossRefGoogle Scholar
  59. 59.
    Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74CrossRefGoogle Scholar
  60. 60.
    Niklinska M, Klimek B (2007) Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in the Polish Carpathians. Biol Fertil Soils 43:511–518CrossRefGoogle Scholar
  61. 61.
    Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Tree 10:63–66PubMedGoogle Scholar
  62. 62.
    Moscatelli MC, Lagomarsino A, De Angelis O, Grego S (2005) Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Appl Soil Ecol 30:162–173CrossRefGoogle Scholar
  63. 63.
    Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochem 49:175–190CrossRefGoogle Scholar
  64. 64.
    Oshima Y, Ogawa N, Harashima S (1996) Regulation of phosphatase synthesis in Saccharomyces cerevisiae—a review. Gene 179:171–177CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Katrin Hofmann
    • 1
  • Andrea Lamprecht
    • 2
  • Harald Pauli
    • 2
  • Paul Illmer
    • 1
  1. 1.Institute of MicrobiologyUniversity of InnsbruckInnsbruckAustria
  2. 2.GLORIA coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences and Center for Global Change and SustainabilityUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations