Microbial Ecology

, Volume 72, Issue 2, pp 287–294 | Cite as

Searching for a Mate: Pheromone-Directed Movement of the Benthic Diatom Seminavis robusta

  • Karen Grace V. Bondoc
  • Christine Lembke
  • Wim Vyverman
  • Georg Pohnert
Microbiology of Aquatic Systems

Abstract

Diatoms are species-rich microalgae that often have a unique life cycle with vegetative cell size reduction followed by size restoration through sexual reproduction of two mating types (MT+ and MT). In the marine benthic diatom Seminavis robusta, mate-finding is mediated by an l-proline-derived diketopiperazine, a pheromone produced by the attracting mating type (MT). Here, we investigate the movement patterns of cells of the opposite mating type (MT+) exposed to a pheromone gradient, using video monitoring and statistical modeling. We report that cells of the migrating mating type (MT+) respond to pheromone gradients by simultaneous chemotaxis and chemokinesis. Changes in movement behavior enable MT+ cells to locate the direction of the pheromone source and to maximize their encounter rate towards it.

Keywords

Diatoms Chemoattraction Pheromone Chemokinesis Chemotaxis Mating success Modeling 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft within the framework of the CRC 1127 ChemBioSys, the IMPRS Exploration of Ecological Interactions with Molecular and Chemical Techniques, the International Leibniz Research School for Microbial and Biomolecular Interactions, the Flemish Research foundation project TG.0374.11 N, and the Ugent research grants 01/04611 and BOF15/GOA/17.

Supplementary material

248_2016_796_MOESM1_ESM.doc (80 kb)
ESM 1 (DOC 80 kb)
248_2016_796_MOESM2_ESM.avi (27 mb)
Movie S1 The movie shows the attraction and accumulation of Seminavis robusta MT+ cells towards the diproline-loaded bead. Cells repeatedly touch the bead as an attempt to pair. The movie was accelerated 50 times and the scale bar indicates 50 μm. (AVI 27603 kb)
248_2016_796_MOESM3_ESM.avi (26.5 mb)
Movie S2 The movie shows that a control bead did not induce any reaction from S. robusta MT+ cells. The movie was accelerated 50 times and the scale bar indicates 50 μm. (AVI 27112 kb)

References

  1. 1.
    Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  2. 2.
    Yool A, Tyrrell T (2003) Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem Cy 17, GB1103CrossRefGoogle Scholar
  3. 3.
    Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192CrossRefPubMedGoogle Scholar
  4. 4.
    Sarthou G, Timmermans KR, Blain S et al (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42CrossRefGoogle Scholar
  5. 5.
    Chepurnov VA, Mann DG, Sabbe K et al (2004) Experimental studies on sexual reproduction in diatoms. Int Rev Cytol 237:91–154CrossRefPubMedGoogle Scholar
  6. 6.
    von Dassow P, Montresor M (2010) Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J Plankton Res 33:3–12CrossRefGoogle Scholar
  7. 7.
    Frenkel J, Vyverman W, Pohnert G (2014) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644CrossRefPubMedGoogle Scholar
  8. 8.
    Gillard J, Frenkel J, Devos V et al (2013) Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew Chem Int Ed Engl 52:854–857CrossRefPubMedGoogle Scholar
  9. 9.
    Sato S, Beakes G, Idei M et al (2011) Novel sex cells and evidence for sex pheromones in diatoms. PLoS One 6, e26923CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev Camb Philos Soc 82:265–289CrossRefPubMedGoogle Scholar
  11. 11.
    Edgar R, Drolet D, Ehrman JM et al (2014) Motile male gametes of the araphid diatom Tabularia fasciculata search randomly for mates. PLoS One 9, e101767CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moeys S, Frenkel J, Lembke C et al (2016) A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 6:19252CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang J, Cao S, Du C et al (2013) Underwater locomotion strategy by a benthic pennate diatom Navicula sp. Protoplasma 250:1203–1212CrossRefPubMedGoogle Scholar
  14. 14.
    Cohn SA, Halpin D, Hawley N et al (2015) Comparative analysis of light-stimulated motility responses in three diatom species. Diatom Res 30:213–225CrossRefGoogle Scholar
  15. 15.
    Cooksey B, Cooksey KE (1988) Chemical signal-response in diatoms of the Genus Amphora. J Cell Sci 91:523–529Google Scholar
  16. 16.
    Bondoc KGV, Heuschele J, Gillard J et al (2016) Selective silicate-directed motility in diatoms. Nat Commun 7:10540CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maier I, Calenberg M (1994) Effect of Extracellular Ca2+ and Ca2+- antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Bot Acta 107:451–460CrossRefGoogle Scholar
  18. 18.
    Gillard J, Devos V, Huysman MJ et al (2008) Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol 148:1394–1411CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barbara GM, Mitchell JG (2003) Marine bacterial organisation around point-like sources of amino acids. FEMS Microbiol Ecol 43:99–109CrossRefPubMedGoogle Scholar
  20. 20.
    Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  21. 21.
    Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256CrossRefPubMedGoogle Scholar
  22. 22.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  23. 23.
    R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. 24.
    Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business MediaGoogle Scholar
  25. 25.
    Pinheiro J, Bates D, DebRoy S et al (2015) _nlme: linear and nonlinear mixed effects models_. vol R package version 3.1-121Google Scholar
  26. 26.
    Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Roy Stat Soc B 73:3–36CrossRefGoogle Scholar
  27. 27.
    Fenchel T (2004) Orientation in two dimensions: chemosensory motile behaviour of Euplotes vannus. Eur J Protistol 40:49–55CrossRefGoogle Scholar
  28. 28.
    Visser AW, Kiorboe T (2006) Plankton motility patterns and encounter rates. Oecologia 148:538–546CrossRefPubMedGoogle Scholar
  29. 29.
    Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153CrossRefGoogle Scholar
  30. 30.
    Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402CrossRefGoogle Scholar
  31. 31.
    Edlund MB, Stoermer EF (1997) Ecological, evolutionary, and systematic significance of diatom life histories. J Phycol 33:897–918CrossRefGoogle Scholar
  32. 32.
    Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefPubMedGoogle Scholar
  33. 33.
    Frenkel J, Wess C, Vyverman W et al (2014) Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 951–952:58–61CrossRefGoogle Scholar
  34. 34.
    Amsler CD, Iken KB (2001) Chemokinesis and chemotaxis in marine bacteria and algae. In: McClintock J. B. BBJ (ed) Marine Chemical Ecology. CRC Press, p 413–430Google Scholar
  35. 35.
    Maier I (1993) Gamete orientation and induction of gametogenesis by pheromones in algae and plants. Plant Cell Environ 16:891–907CrossRefGoogle Scholar
  36. 36.
    Scalco E, Stec K, Iudicone D et al (2014) The dynamics of sexual phase in the marine diatom Pseudo‐nitzschia multistriata (Bacillariophyceae). J Phycol 50:817–828CrossRefPubMedGoogle Scholar
  37. 37.
    Garren M, Son K, Raina JB et al (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007CrossRefPubMedGoogle Scholar
  38. 38.
    Dusenbery DB (1997) Minimum size limit for useful locomotion by free-swimming microbes. Proc Natl Acad Sci 94:10949–10954CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dusenbery DB (2000) Selection for high gamete encounter rates explains the success of male and female mating types. J Theor Biol 202:1–10CrossRefPubMedGoogle Scholar
  40. 40.
    Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122CrossRefPubMedGoogle Scholar
  41. 41.
    Boland W, Pohnert G, Maier I (1995) Pericyclic reactions in nature: spontaneous Cope rearrangement inactivates algae pheromones. Angew Chem Int Ed Engl 34:1602–1604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karen Grace V. Bondoc
    • 1
    • 2
  • Christine Lembke
    • 1
  • Wim Vyverman
    • 3
  • Georg Pohnert
    • 1
    • 2
  1. 1.Institute for Inorganic and Analytical Chemistry, Bioorganic AnalyticsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Max Planck Institute for Chemical EcologyJenaGermany
  3. 3.Laboratory of Protistology and Aquatic Ecology, Department of BiologyUniversity GentGhentBelgium

Personalised recommendations