Microbial Ecology

, Volume 72, Issue 2, pp 493–495 | Cite as

Resilience of Fungal Communities to Elevated CO2

  • Stavros D. Veresoglou
  • Ian C. Anderson
  • Natalia M. F. de Sousa
  • Stefan Hempel
  • Matthias C. Rillig
Notes and Short Communications


Soil filamentous fungi play a prominent role in regulating ecosystem functioning in terrestrial ecosystems. This necessitates understanding their responses to climate change drivers in order to predict how nutrient cycling and ecosystem services will be influenced in the future. Here, we provide a quantitative synthesis of ten studies on soil fungal community responses to elevated CO2. Many of these studies reported contradictory diversity responses. We identify the duration of the study as an influential parameter that determines the outcome of experimentation. Our analysis reconciles the existing globally distributed experiments on fungal community responses to elevated CO2 and provides a framework for comparing results of future CO2 enrichment studies.


Community structure Elevated CO2 FACE experiments Filamentous fungi 



The material of the meta-analyses was independently analyzed and discussed as part of the module “Lebensgemeinschaften & Biodiversität” by SDV and his students.

Supplementary material

248_2016_795_MOESM1_ESM.doc (76 kb)
ESM 1 (DOC 75 kb)
248_2016_795_MOESM2_ESM.csv (5 kb)
ESM 1 (CSV 4.70 kb)
248_2016_795_MOESM3_ESM.csv (1 kb)
ESM 1 (CSV 1.48 kb)


  1. 1.
    Fierer N, Stichland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249CrossRefPubMedGoogle Scholar
  2. 2.
    Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dunbar J, Gallegos-Graves LV, Steven B, Mueller R, Hesse C, Zak DR, Kuske CR (2014) Surface soil fungal and bacterial communities in aspen stands are resilient to 11 years of elevated CO2 and O-3. Soil Biol Biochem 76:227–234CrossRefGoogle Scholar
  4. 4.
    Nguyen LM, Buttner MP, Cruz P, Smith SD, Robleto EA (2011) Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a Mojave Desert ecosystem. J Arid Environ 75:917–925CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565CrossRefPubMedGoogle Scholar
  6. 6.
    Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049CrossRefPubMedGoogle Scholar
  7. 7.
    Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonent M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenscwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 507:218–221CrossRefGoogle Scholar
  8. 8.
    Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Al-Soud WA, Sørensen SJ, He Z, White D, Sinclair A, Crooks B, Zhou J, Campbell CD (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408–2420CrossRefPubMedGoogle Scholar
  9. 9.
    Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, Ranjard L, Maron PA (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183CrossRefPubMedGoogle Scholar
  10. 10.
    Curlevski NJA, Drigo B, Cairney JWG, Anderson IC (2014) Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol Biochem 70:263–271CrossRefGoogle Scholar
  11. 11.
    Procter AC, Ellis JC, Fay PA, Polley HW, Jackson RB (2014) Fungal community responses to past and future atmospheric CO2 differ by soil type. Appl Environ Microbiol 80:7364–7377CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC (2014) Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Global Change Biol 20:2555–2565CrossRefGoogle Scholar
  13. 13.
    Anderson IC, Drigo B, Keniry K, Oula G, Chambers SM, Tissue DT, Cairney JWG (2013) Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two eucalyptus species. FEMS Microbiol Ecol 83:425–437CrossRefPubMedGoogle Scholar
  14. 14.
    Lesaulnier C, Papamichail D, McCorkle S, Olview B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941CrossRefPubMedGoogle Scholar
  15. 15.
    Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287CrossRefPubMedGoogle Scholar
  16. 16.
    Janus LR, Angeloni NL, McCormack J, Rier ST, Tuchman NC, Kelly JJ (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109CrossRefPubMedGoogle Scholar
  17. 17.
    Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214CrossRefPubMedGoogle Scholar
  19. 19.
    Bloch CP, Higgins CL, Willig MR (2007) Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116:395–406CrossRefGoogle Scholar
  20. 20.
    Keddy PA, MacLellan P (1990) Centrifugal organization in forests. Oikos 59:75–84CrossRefGoogle Scholar
  21. 21.
    Klironomos JN, Allen MF, Rillig MC, Piotrowski JS, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624CrossRefPubMedGoogle Scholar
  22. 22.
    Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsens MA, Suttle KB (2011) Fungal community responses to precipitation. Global Change Biol 17:1637–1645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stavros D. Veresoglou
    • 1
    • 2
  • Ian C. Anderson
    • 3
  • Natalia M. F. de Sousa
    • 1
    • 2
  • Stefan Hempel
    • 1
    • 2
  • Matthias C. Rillig
    • 1
    • 2
  1. 1.Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
  3. 3.Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithAustralia

Personalised recommendations