Microbial Ecology

, Volume 72, Issue 4, pp 955–964 | Cite as

High Nutrient Concentration Can Induce Virulence Factor Expression and Cause Higher Virulence in an Environmentally Transmitted Pathogen

  • Reetta Penttinen
  • Hanna Kinnula
  • Anssi Lipponen
  • Jaana K. H. Bamford
  • Lotta-Riina Sundberg
Host Microbe Interactions


Environmentally transmitted opportunistic pathogens shuttle between two substantially different environments: outside-host and within-host habitats. These environments differ from each other especially with respect to nutrient availability. Consequently, the pathogens are required to regulate their behavior in response to environmental cues in order to survive, but how nutrients control the virulence in opportunistic pathogens is still poorly understood. In this study, we examined how nutrient level in the outside-host environment affects the gene expression of putative virulence factors of the opportunistic fish pathogen Flavobacterium columnare. The impact of environmental nutrient concentration on bacterial virulence was explored by cultivating the bacteria in various nutrient conditions, measuring the gene expression of putative virulence factors with RT-qPCR and, finally, experimentally challenging rainbow trout (Oncorhynchus mykiss) fry with these bacteria. Our results show that increased environmental nutrient concentration can increase the expression of putative virulence genes, chondroitinase (cslA) and collagenase, in the outside-host environment and may lead to more rapid fish mortality. These findings address that the environmental nutrients may act as significant triggers of virulence gene expression and therefore contribute to the interaction between an environmentally transmitted opportunistic pathogen and its host.


Chondroitinase Collagenase Colony type Flavobacterium columnare Nutrients RT-qPCR Virulence factors 



The authors would like to thank Prof. Annemie Decostere for commenting on the manuscript and Ms Irene Helkala, Ville Hoikkala, MSc, Dr. Elina Laanto, Katja Neuvonen, MSc, Marjut Paljakka, MSc, Mr Petri Papponen, Dr. Katja Pulkkinen, and Dr. Ilona Rissanen, for assistance in the laboratory.

Compliance with Ethical Standards

The fish experiments were conducted according to the Finnish Act on Use of Animals for Experimental Purposes, under permission ESAVI-3940/04.10.07/2015 granted for L-RS by the National Animal Experiment Board at the Regional State Administrative Agency for Southern Finland.

Funding Information

This work was funded by Academy of Finland grant nos. 252411 (the Centre of Excellence in Biological Interactions 2012–2017) and 272995 (for L-RS), Maj and Tor Nessling Foundation, and the Doctoral Programme in Biological and Environmental Science (University of Jyväskylä). The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication in Microbial Ecology.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2016_781_MOESM1_ESM.pdf (307 kb)
ESM 1 (PDF 306 kb)


  1. 1.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245CrossRefPubMedGoogle Scholar
  2. 2.
    Arias CR, Lafrentz S, Cai W, Olivares-Fuster O (2012) Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes. BMC Microbiol 12:266CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bernardet JF (1997) Immunization with bacterial antigens: Flavobacterium and Flexibacter infections. Dev Biol Stand 90:179PubMedGoogle Scholar
  4. 4.
    Bertolini JM, Rohovec JS (1992) Electrophoretic detection of proteases from different Flexibacter-Columnaris strains and assessment of their variability. Dis Aquat Org 12:121CrossRefGoogle Scholar
  5. 5.
    Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bruno J, Petes L, Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056CrossRefGoogle Scholar
  7. 7.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611CrossRefPubMedGoogle Scholar
  8. 8.
    Casadevall A, Pirofski L (2001) Host-pathogen interactions: the attributes of virulence. J Infect Dis 184:337CrossRefPubMedGoogle Scholar
  9. 9.
    Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343CrossRefPubMedGoogle Scholar
  10. 10.
    Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A (2013) Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res 44:27CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Decostere A, Haesebrouck F, Devriese LA (1997) Shieh medium supplemented with tobramycin for selective isolation of Flavobacterium columnare (Flexibacter columnaris) from diseased fish. J Clin Microbiol 35:322PubMedPubMedCentralGoogle Scholar
  13. 13.
    Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessieres P, Gibrat JF, Claverol S, Dumetz F, Le Henaff M, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763CrossRefPubMedGoogle Scholar
  14. 14.
    Dumpala PR, Gulsoy N, Lawrence ML, Karsi A (2010) Proteomic analysis of the fish pathogen Flavobacterium columnare. Proteome Sci 8:26CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613CrossRefPubMedGoogle Scholar
  16. 16.
    Guijarro JA, Cascales D, Garcia-Torrico AI, Garcia-Dominguez M, Mendez J (2015) Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 6:700CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hall SR, Knight CJ, Becker CR, Duffy MA, Tessier AJ, Caceres CE (2009) Quality matters: resource quality for hosts and the timing of epidemics. Ecol Lett 12:118CrossRefPubMedGoogle Scholar
  18. 18.
    Harrington DJ (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64:1885PubMedPubMedCentralGoogle Scholar
  19. 19.
    Houle MA, Grenier D, Plamondon P, Nakayama K (2003) The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiol Lett 221:181CrossRefPubMedGoogle Scholar
  20. 20.
    Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J (2014) Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 209:1105CrossRefPubMedGoogle Scholar
  21. 21.
    Ketola T, Mikonranta L, Laakso J, Mappes J (2016) Different food sources elicit fast changes to bacterial virulence. Biol Lett 12:0150660CrossRefGoogle Scholar
  22. 22.
    Kunttu HM, Sundberg L-R, Pulkkinen K, Valtonen ET (2012) Environment may be the source of Flavobacterium columnare outbreaks at fish farms. Environ Microbiol Rep 4:398CrossRefPubMedGoogle Scholar
  23. 23.
    Kunttu HM, Jokinen EI, Valtonen ET, Sundberg L-R (2011) Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J Appl Microbiol 111:1319CrossRefPubMedGoogle Scholar
  24. 24.
    Kunttu HM, Suomalainen L-R, Jokinen EI, Valtonen ET (2009) Flavobacterium columnare colony types: connection to adhesion and virulence? Microb Pathog 46:21CrossRefPubMedGoogle Scholar
  25. 25.
    Kunttu HM, Valtonen ET, Jokinen EI, Suomalainen L-R (2009) Saprophytism of a fish pathogen as a transmission strategy. Epidemics 1:96CrossRefPubMedGoogle Scholar
  26. 26.
    Laanto E, Sundberg L-R, Bamford JKH (2011) Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol 77:7868CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laanto E, Penttinen RK, Bamford JKH, Sundberg L-R (2014) Comparing the different morphotypes of a fish pathogen—implications for key virulence factors in Flavobacterium columnare. BMC Microbiol 14:170CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Laanto E, Bamford JKH, Laakso J, Sundberg L-R (2012) Phage-driven loss of virulence in a fish pathogenic bacterium. Plos One 7:e53157CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lantz M (1997) Are bacterial proteases important virulence factors? J Periodont Res 32:126CrossRefPubMedGoogle Scholar
  30. 30.
    Lebrun I, Marques-Porto R, Pereira AS, Pereira A, Perpetuo EA (2009) Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini-Rev Med Chem 9:820CrossRefPubMedGoogle Scholar
  31. 31.
    Li N, Qin T, Zhang XL, Huang B, Liu ZX, Xie HX, Zhang J, McBride MJ, Nie P (2015) Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. Appl Environ Microbiol 81:7394CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li N, Zhang J, Zhang LQ, Nie P (2010) Difference in genes between a high virulence strain G(4) and a low virulence strain G(18) of Flavobacterium columnare by using suppression subtractive hybridization. J Fish Dis 33:403CrossRefPubMedGoogle Scholar
  33. 33.
    McKenzie VJ, Townsend AR (2007) Parasitic and infectious disease responses to changing global nutrient cycles. Ecohealth 4:384CrossRefGoogle Scholar
  34. 34.
    Nakayama H, Tanaka K, Teramura N, Hattori S (2015) Expression of collagenase in Flavobacterium psychrophilum isolated from cold-water disease-affected ayu (Plecoglossus altivelis). Biosci Biotechnol Biochem 80:135PubMedGoogle Scholar
  35. 35.
    Olivares-Fuster O, Arias CR (2008) Use of suppressive subtractive hybridization to identify Flavobacterium columnare DNA sequences not shared with Flavobacterium johnsoniae. Lett Appl Microbiol 46:605CrossRefPubMedGoogle Scholar
  36. 36.
    Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR (2007) Host-specific association between Flavobacterium columnare genomovars and fish species. Syst Appl Microbiol 30:624CrossRefPubMedGoogle Scholar
  37. 37.
    Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 77:8097CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ostland VE, Byrne PJ, Hoover G, Ferguson HW (2000) Necrotic myositis of rainbow trout, Oncorhynchus mykiss (Walbaum): proteolytic characteristics of a crude extracellular preparation from Flavobacterium psychrophilum. J Fish Dis 23:329CrossRefGoogle Scholar
  39. 39.
    Pfluger-Grau K, Gorke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205CrossRefPubMedGoogle Scholar
  40. 40.
    Pulkkinen K, Suomalainen L-R, Read AF, Ebert D, Rintamaki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci 277:593CrossRefPubMedGoogle Scholar
  41. 41.
    Rao M, Tanksale A, Ghatge M, Deshpande V (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597PubMedPubMedCentralGoogle Scholar
  42. 42.
    Revetta RP, Rodgers MR, Kinkle BK (2005) Isolation and identification of freshwater bacteria antagonistic to Giardia intestinalis cysts. J Water Health 3:83PubMedGoogle Scholar
  43. 43.
    Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rudek W, Haque R (1976) Extracellular enzymes of genus Bacteroides. J Clin Microbiol 4:458PubMedPubMedCentralGoogle Scholar
  45. 45.
    Salyers AA, Kotarski SF (1980) Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron. J Bacteriol 143:781PubMedPubMedCentralGoogle Scholar
  46. 46.
    Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73:233CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Song Y, Fryer J, Rohover J (1988) Comparison of six media for the cultivation of Flexibacter-Columnaris. Fish Pathol 23:91CrossRefGoogle Scholar
  48. 48.
    Stringer-Roth KM, Yunghans W, Caslake LF (2002) Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J Fish Dis 25:687CrossRefGoogle Scholar
  49. 49.
    Sundberg L-R, Kunttu HM, Valtonen ET (2014) Starvation can diversify the population structure and virulence strategies of an environmentally transmitting fish pathogen. BMC Microbiol 14:67CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sundell K, Wiklund T (2015) Characteristics of epidemic and sporadic Flavobacterium psychrophilum sequence types. Aquaculture 441:51CrossRefGoogle Scholar
  51. 51.
    Suomalainen L-R, Tiirola M, Valtonen ET (2006) Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J Fish Dis 29:757CrossRefPubMedGoogle Scholar
  52. 52.
    Tekedar HC, Karsi A, Gillaspy AF, Dyer DW, Benton NR, Zaitshik J, Vamenta S, Banes MM, Gulsoy N, Aboko-Cole M, Waldbieser GC, Lawrence ML (2012) Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol 194:2763CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Thomas F, Hehemann J, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tripathi NK, Latimer KS, Gregory CR, Ritchie BW, Wooley RE, Walker RL (2005) Development and evaluation of an experimental model of cutaneous columnaris disease in koi Cyprinus carpio. J Vet Diagn Invest 17:45CrossRefPubMedGoogle Scholar
  55. 55.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  56. 56.
    Wagner B, Wise D, Khoo L, Terhune J (2002) The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 14:263CrossRefGoogle Scholar
  57. 57.
    Wakabayashi H (1991) Effect of environmental conditions on the infectivity of Flexibacter-Columnaris to fish. J Fish Dis 14:279CrossRefGoogle Scholar
  58. 58.
    Wedekind C, Gessner MO, Vazquez F, Maerki M, Steiner D (2010) Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology 91:1251CrossRefPubMedGoogle Scholar
  59. 59.
    Zenobia C, Hajishengallis G (2015) Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence 6:236CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Reetta Penttinen
    • 1
  • Hanna Kinnula
    • 1
  • Anssi Lipponen
    • 2
  • Jaana K. H. Bamford
    • 1
  • Lotta-Riina Sundberg
    • 1
  1. 1.Department of Biological and Environmental Science and Nanoscience CenterUniversity of Jyvaskyla, Center of Excellence in Biological InteractionsUniversity of JyvaskylaFinland
  2. 2.University of Eastern Finland, A.I. Virtanen Institute for Molecular SciencesKuopioFinland

Personalised recommendations