Advertisement

Microbial Ecology

, Volume 72, Issue 2, pp 418–427 | Cite as

Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities

  • Dan Xiang
  • Stavros D. Veresoglou
  • Matthias C. Rillig
  • Tianle Xu
  • Huan Li
  • Zhipeng Hao
  • Baodong Chen
Soil Microbiology

Abstract

The physiological tolerance hypothesis (PTH) postulates that it is the tolerance of species to climatic factors that determines overall community richness. Here, we tested whether a group of mutualistic microbes, Glomeromycota, is distributed in semi-arid environments in ways congruent with the PTH. For this purpose, we modeled with climatic predictors the niche of each of the four orders of Glomeromycota and identified predictors of arbuscular mycorrhizal (AM) fungal operational taxonomic unit (OTU) richness. Our dataset consisted of 50 paired grassland and farmland sites in the farming-pastoral ecotone of northern China. We observed shifts in the relative abundance of AM fungal orders in response to climatic variables but also declines in OTU richness in grassland sites that had experienced high precipitation during the preceding year which was incongruous with the PTH. We found pronounced differences across groups of Glomeromycotan fungi in their responses to climatic variables and identified strong dependencies of AM fungal communities on precipitation. Given that precipitation is expected to further decline in the farming-pastoral ecotone over the coming years and that mycorrhiza represents an integral constituent of ecosystem functioning, it is likely that the ecosystem services in the region will change accordingly.

Keywords

Arbuscular mycorrhizal fungi Grasslands Physiological tolerance hypothesis Ecological niche modeling Farming-pastoral ecotone 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (41371264; 41071178) and State Key Laboratory of Urban and Regional Ecology, China (SKLURE2012-1-03).

Supplementary material

248_2016_773_MOESM1_ESM.doc (520 kb)
ESM 1 (DOC 519 kb)

References

  1. 1.
    Currie DJ, Mittelbach GG, Cornell HV, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorft T, O'Bien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134CrossRefGoogle Scholar
  2. 2.
    Kleidon A, Mooney HA (2000) A global distribution of biodiversity inferred from climatic constraints: results from a process-based modelling study. Global Change Biol 6:507–523CrossRefGoogle Scholar
  3. 3.
    Spasojevic MJ, Grace JB, Harrison S, Damschen EI (2014) Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. J Ecol 102:447–455CrossRefGoogle Scholar
  4. 4.
    Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB, Dunfield PF (2014) Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J 8:1166–1174CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramirez KS, Leff JW, Barberán A, Bates ST, Betlay J, Crowther TW, Kelly EF, Oldfield EE, Shaw EA, Steenbock C, Bradford MA, Wall DH, Fierer N (2015) Biogeographic patterns in below-ground diversity in New York City's central park are similar to these observed globally. Proc Natl Acad Sci U S A 281:20141988Google Scholar
  6. 6.
    Klironomos JN, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370CrossRefPubMedGoogle Scholar
  7. 7.
    Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009CrossRefPubMedGoogle Scholar
  8. 8.
    Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480CrossRefPubMedGoogle Scholar
  9. 9.
    Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, Bago A, Azcon-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188CrossRefPubMedGoogle Scholar
  10. 10.
    Hawkes CV, Hartley IP, Ineson P, Fitter AH (2009) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol 14:1181–1190CrossRefGoogle Scholar
  11. 11.
    Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261CrossRefGoogle Scholar
  12. 12.
    Veresoglou SD, Caruso T, Rillig MC (2013) Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368:507–518CrossRefGoogle Scholar
  13. 13.
    Yang W, Zheng Y, Gao C, He XH, Ding Q, Kim YC, Rui YC, Wang SP, Guo LD (2013) The Arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan plateau. PLoS One 8:e76447CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu MY, Xie F, Wang K (2014) Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of northern China. PLoS One 9:e96604CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xiang D, Verbruggen E, Hu YJ, Veresoglou SD, Rillig MC, Zhou WP, Xu TL, Li H, Hao ZP, Chen YL, Chen BD (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol 204:968–978CrossRefPubMedGoogle Scholar
  16. 16.
    Hua L, Squires VR (2015) Managing China's pastoral lands: current problems and future prospects. Land Use Pol 43:129–137CrossRefGoogle Scholar
  17. 17.
    Wu B, Ci LJ (2002) Landscape change and desertification development in the Mu Us Sandland, northern China. J Arid Environ 50:429–444CrossRefGoogle Scholar
  18. 18.
    Wang Z, Jiang J, Liao Y, Deng L (2015) Risk assessment of maize drought hazard in the middle region of farming-pastoral ecotone in northern China. Nat Hazards 76:1515–1534CrossRefGoogle Scholar
  19. 19.
    Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH (2010) Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol 46:288–294CrossRefGoogle Scholar
  20. 20.
    Dee DP, Uppalaa SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137:553–597CrossRefGoogle Scholar
  21. 21.
    Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys Res Lett 34:L19709CrossRefGoogle Scholar
  22. 22.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541CrossRefGoogle Scholar
  23. 23.
    Hao X, Jiang R, Chen T (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics 2:611–618CrossRefGoogle Scholar
  24. 24.
    Veresoglou SD, Powell JR, Davison J, Lekberg Y, Rillig MC (2014) The Leinster and Cobbold indices improve inferences of microbial diversity. Fungal Ecol 11:1–7CrossRefGoogle Scholar
  25. 25.
    Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531CrossRefPubMedGoogle Scholar
  26. 26.
    Ellison AM, Gotelli NJ, Inouye BD, Strong DR (2014) P values, hypothesis testing, and model selection: it's déjà vu all over again. Ecology 95:609–610CrossRefPubMedGoogle Scholar
  27. 27.
    Burnham KP, Anderson DR (2002) Model selection and inference. A practical information-theoretic approach. Springer, New York, NY, USAGoogle Scholar
  28. 28.
    Bradshaw CJA, Giam XL, Tan HTW, Brook BW, Sodhi NS (2008) Threat or invasive status in legumes is related to opposite extremes of the same ecological and life-history attributes. J Ecol 96:869–883CrossRefGoogle Scholar
  29. 29.
    Hu YJ, Xiang D, Veresoglou SD, Chen FL, Chen YL, Hao ZP, Zhang X, Chen BD (2014) Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biol Biochem 77:51–57CrossRefGoogle Scholar
  30. 30.
    Irl SDH, Harter DEV, Steinbauer MJ, Puyol DG, Fernandez-Palacios JM, Jentsch A, Beierkuhnlein C (2015) Climate vs. topography - spatial patterns of plant species diversity and endemism on a high-elevation island. J Ecol 103:1621–1633CrossRefGoogle Scholar
  31. 31.
    Burnham KP, Anderson DR (2014) P values are only an index to evidence: 20th-vs. 21st-century statistical science. Ecology 95:627–630CrossRefPubMedGoogle Scholar
  32. 32.
    Hardin JW, Hilbe JM (2012) Generalized linear models and extensions, 3rd edn. Stata Press, New York USAGoogle Scholar
  33. 33.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan
  34. 34.
    Legendre P, Gallanger ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  35. 35.
    Poisot T, Péquin B, Gravel D (2013) High throughput sequencing: a roadmap to community ecology. Ecol Evol 3:1125–1139CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Öpik M, Zobel M, Cantero JJ et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430CrossRefPubMedGoogle Scholar
  37. 37.
    Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973CrossRefPubMedGoogle Scholar
  39. 39.
    Tedersoo L, Bahram B, Põlme S et al (2015) Global diversity and geography of soil fungi. Science 346:6213Google Scholar
  40. 40.
    Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  41. 41.
    Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483CrossRefPubMedGoogle Scholar
  42. 42.
    Wan C, Sosebee RE, McMichael BL (1993) Does hydraulic lift exist in shallow-rooted species? a quantitative examination with a half-shrub Gutierrezia sarothrae. Plant Soil 153:11–17CrossRefGoogle Scholar
  43. 43.
    Davison JM, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agr Ecosyst Environ 134:257–268CrossRefGoogle Scholar
  45. 45.
    Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang YP, Cornelissen JHC (2015) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecol Biogeogr 24:371–382CrossRefGoogle Scholar
  46. 46.
    Mamolos AP, Vasilikos CV, Veresoglou DS (2011) Temporal patterns of growth and nutrient accumulation of plant species in a Mediterranean mountainous grassland. Ecol Res 26:583–593CrossRefGoogle Scholar
  47. 47.
    Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biol 20:3546–3659CrossRefGoogle Scholar
  48. 48.
    Moora M, Davison J, Öpik M, Metsis M, Saks U, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621CrossRefPubMedGoogle Scholar
  49. 49.
    Gosling P, Proctor M, Jones J, Bending GD (2014) Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24:1–11CrossRefPubMedGoogle Scholar
  50. 50.
    Squires VR, Lu X, Lu Q, Wang T, Yang Y (2009) Rangeland degradation and recovery in China's pastoral lands. Cabi, London, UKCrossRefGoogle Scholar
  51. 51.
    van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedGoogle Scholar
  52. 52.
    Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135CrossRefPubMedGoogle Scholar
  53. 53.
    Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dan Xiang
    • 1
    • 2
  • Stavros D. Veresoglou
    • 3
    • 4
  • Matthias C. Rillig
    • 3
    • 4
  • Tianle Xu
    • 1
  • Huan Li
    • 2
  • Zhipeng Hao
    • 1
  • Baodong Chen
    • 1
  1. 1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
  3. 3.Freie Universität Berlin, Institut für BiologieBerlinGermany
  4. 4.Berlin-Brandenburg Institute of Advanced Biodiversity ResearchBerlinGermany

Personalised recommendations