Advertisement

Microbial Ecology

, Volume 72, Issue 1, pp 240–251 | Cite as

Assessment of Bacterial Communities and Predictive Functional Profiling in Soils Subjected to Short-Term Fumigation-Incubation

  • Lin Chen
  • Yu Luo
  • Jianming Xu
  • Zhuyun Yu
  • Kaile Zhang
  • Philip C. Brookes
Soil Microbiology

Abstract

Previous investigations observed that when soil was fumigated with ethanol-free CHCl3 for 24 h and then incubated under appropriate conditions, after the initial flush of CO2 was over, soil organic carbon (SOC) mineralization continued at the same rate as in the non-fumigated soil. This indicates that, following fumigation, the much diminished microbial population still retained the same ability to mineralize SOC as the much larger non-fumigated population. We hypothesize that although fumigation drastically alters the soil bacterial community abundance, composition, and diversity, it has little influence on the bacterial C-metabolic functions. Here, we conducted a 30-day incubation experiment involving a grassland soil and an arable soil with and without CHCl3 fumigation. At days 0, 7, and 30 of the incubation, the bacterial abundances were determined by quantitative PCR, and the bacterial community composition and diversity were assessed via the 16S rRNA gene amplicon sequencing. PICRUSt was used to predict the metagenome functional content from the sequence data. Fumigation considerably changed the composition and decreased the abundance and diversity of bacterial community at the end of incubation. At day 30, Firmicutes (mainly Bacilli) accounted for 70.9 and 94.6 % of the total sequences in the fumigated grassland and arable soil communities, respectively. The two fumigated soil communities exhibited large compositional and structural differences during incubation. The families Paenibacillaceae, Bacillaceae, and Symbiobacteriaceae dominated the bacterial community in the grassland soil, and Alicyclobacillaceae in the arable soil. Fumigation had little influence on the predicted abundances of KEGG orthologs (KOs) assigned to the metabolism of the main acid esters, saccharides, amino acids, and lipids in the grassland soil community. The saccharide-metabolizing KO abundances were decreased, but the acid ester- and fatty acid-metabolizing KO abundances were elevated by fumigation in the arable soil community. Our study suggests functional redundancy regarding the bacterial genetic potential associated with SOC mineralization.

Keywords

Fumigation qPCR MiSeq sequencing Bacterial community Metagenome functions 

Notes

Acknowledgments

All authors are very grateful to the two reviewers for their insightful comments that improved this manuscript greatly. We thank Dr. Youzhi Feng and Dr. Yongjie Yu for the help in MiSeq sequencing and data processing, and Jiangye Li for the grassland soil sampling and analysis. This work is jointly supported by the National Natural Science Foundation of China (41371246), the National Basic Research Program (973 Program) of China (2014CB441003), and China Postdoctoral Science Foundation (2015M581944).

Supplementary material

248_2016_766_MOESM1_ESM.docx (261 kb)
Fig S1 (DOCX 261 kb)
248_2016_766_MOESM2_ESM.docx (427 kb)
Fig S2 (DOCX 426 kb)
248_2016_766_MOESM3_ESM.docx (237 kb)
Fig S3 (DOCX 236 kb)
248_2016_766_MOESM4_ESM.docx (483 kb)
Fig S4 (DOCX 483 kb)
248_2016_766_MOESM5_ESM.docx (177 kb)
Fig S5 (DOCX 177 kb)
248_2016_766_MOESM6_ESM.docx (15 kb)
Table S1 (DOCX 15 kb)
248_2016_766_MOESM7_ESM.docx (17 kb)
Table S2 (DOCX 16 kb)
248_2016_766_MOESM8_ESM.docx (23 kb)
Table S3 (DOCX 23 kb)
248_2016_766_MOESM9_ESM.docx (16 kb)
Table S4 (DOCX 15 kb)
248_2016_766_MOESM10_ESM.docx (21 kb)
Table S5 (DOCX 21 kb)

References

  1. 1.
    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x CrossRefPubMedGoogle Scholar
  2. 2.
    Jenkinson DS, Powlson DS (1976) Effects of biocidal treatments on metabolism in soil. I. Fumigation with chloroform. Soil Biol Biochem 8:167–177CrossRefGoogle Scholar
  3. 3.
    Wu J, Brookes PC, Jenkinson DS (1996) Evidence for the use of a control in the fumigation-incubation method for measuring microbial biomass carbon in soil. Soil Biol Biochem 28:511–518. doi: 10.1016/0038-0717(95)00193-x CrossRefGoogle Scholar
  4. 4.
    Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O'Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73. doi: 10.1016/j.soilbio.2007.06.021 CrossRefGoogle Scholar
  5. 5.
    Zelles L, Palojarvi A, Kandeler E, VonLutzow M, Winter K, Bai QY (1997) Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation. Soil Biol Biochem 29:1325–1336. doi: 10.1016/s0038-0717(97)00062-x CrossRefGoogle Scholar
  6. 6.
    Dickens HE, Anderson JM (1999) Manipulation of soil microbial community structure in bog and forest soils using chloroform fumigation. Soil Biol Biochem 31:2049–2058. doi: 10.1016/s0038-0717(99)00128-5 CrossRefGoogle Scholar
  7. 7.
    Chen L, Xu J, Feng Y, Wang J, Yu Y, Brookes PC (2015) Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Front Microbiol 6:1149. doi: 10.3389/fmicb.2015.01149 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  9. 9.
    Poll C, Marhan S, Ingwersen J, Kandeler E (2008) Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol Biochem 40:1306–1321. doi: 10.1016/j.soilbio.2007.04.002 CrossRefGoogle Scholar
  10. 10.
    Dominguez-Mendoza CA, Bello-Lopez JM, Navarro-Noya YE, de Leon-Lorenzana AS, Delgado-Balbuena L, Gomez-Acata S, Ruiz-Valdiviezo VM, Ramirez-Villanueva DA, Luna-Guido M, Dendooven L (2014) Bacterial community structure in fumigated soil. Soil Biol Biochem 73:122–129. doi: 10.1016/j.soilbio.2014.02.012 CrossRefGoogle Scholar
  11. 11.
    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. doi: 10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  13. 13.
    Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169. doi: 10.1016/0038-0717(90)90046-3 CrossRefGoogle Scholar
  14. 14.
    Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci U S A 105:10583–10588. doi: 10.1073/pnas.0709942105 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  18. 18.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi: 10.1093/bioinformatics/btp636 CrossRefPubMedGoogle Scholar
  19. 19.
    Ganesh S, Parris DJ, De Long EF, Stewart FJ (2014) Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J 8:187–211. doi: 10.1038/ismej.2013.144 CrossRefPubMedGoogle Scholar
  20. 20.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. doi: 10.1093/molbev/msp077 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi: 10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  22. 22.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349CrossRefGoogle Scholar
  24. 24.
    Development Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  25. 25.
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–94. doi: 10.1038/nature11237 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63. doi: 10.1890/04-1724 CrossRefPubMedGoogle Scholar
  27. 27.
    Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211. doi: 10.1016/j.soilbio.2013.08.024 CrossRefGoogle Scholar
  28. 28.
    Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329. doi: 10.1016/0038-0717(82)90001-3 CrossRefGoogle Scholar
  29. 29.
    Morrissey EM, McHugh TA, Preteska L, Hayer M, Dijkstra P, Hungate BA, Schwartz E (2015) Dynamics of extracellular DNA decomposition and bacterial community composition in soil. Soil Biol Biochem 86:42–49. doi: 10.1016/j.soilbio.2015.03.020 CrossRefGoogle Scholar
  30. 30.
    Brookes PC, Kemmitt SJ, Addiscott TM, Bird N (2009) Reply to Kuzyakov et al’.s comments on our paper:‘Kemmitt, S.J., Lanyon, C.V., Waite, I.S., Wen, Q., O’Donnell, A.G., Brookes, P.C., 2008. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40, 61–73’. Soil Biol Biochem 41:440–443. doi: 10.1016/j.soilbio.2008.09.002 CrossRefGoogle Scholar
  31. 31.
    Paredes-Sabja D, Setlow P, Sarker MR (2011) Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19:85–94. doi: 10.1016/j.tim.2010.10.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556. doi: 10.1016/j.mib.2003.10.001 CrossRefPubMedGoogle Scholar
  33. 33.
    Paredes-Sabja D, Torres JA, Setlow P, Sarker MR (2008) Clostridium perfringens spore germination: characterization of germinants and their receptors. J Bacteriol 190:1190–1201. doi: 10.1128/jb.01748-07 CrossRefPubMedGoogle Scholar
  34. 34.
    Carr KA, Janes BK, Hanna PC (2010) Role of the gerP operon in germination and outgrowth of Bacillus anthracis spores. Plos One 5:e9128. doi: 10.1371/journal.pone.0009128 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xiao Y, Francke C, Abee T, Wells-Bennik MHJ (2011) Clostridial spore germination versus bacilli: genome mining and current insights. Food Microbiol 28:266–274. doi: 10.1016/j.fm.2010.03.016 CrossRefPubMedGoogle Scholar
  36. 36.
    Spinelli ACNF, Sant'Ana AS, Pacheco-Sanchez CP, Massaguer PR (2010) Influence of the hot-fill water-spray-cooling process after continuous pasteurization on the number of decimal reductions and on Alicyclobacillus addoterrestris CRA 7152 growth in orange juice stored at 35 °C. Int J Food Microbiol 137:295–298. doi: 10.1016/j.ijfoodmicro.2009.11.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Silva LP, Gonzales-Barron U, Cadavez V, Sant'Ana AS (2015) Modeling the effects of temperature and pH on the resistance of Alicyclobacillus acidoterrestris in conventional heat-treated fruit beverages through a meta-analysis approach. Food Microbiol 46:541–552. doi: 10.1016/j.fm.2014.09.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47. doi: 10.1016/j.apsoil.2013.03.011 CrossRefGoogle Scholar
  39. 39.
    Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W (2013) A novel lignin degradation bacterial consortium for efficient pulping. Bioresour Technol 139:113–119. doi: 10.1016/j.biortech.2013.04.033 CrossRefPubMedGoogle Scholar
  40. 40.
    Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94. doi: 10.1186/1472-6750-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Feng Y, Chen R, Hu J, Zhao F, Wang J, Chu H, Zhang J, Dolfing J, Lin X (2015) Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol Biochem 81:186–194. doi: 10.1016/j.soilbio.2014.11.021 CrossRefGoogle Scholar
  42. 42.
    Garrity GM (2005) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New YorkGoogle Scholar
  43. 43.
    Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD (2015) Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J 9:1693–1699. doi: 10.1038/ismej.2014.252 CrossRefPubMedGoogle Scholar
  44. 44.
    Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. doi: 10.3389/fmicb.2012.00348 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi: 10.1111/j.1365-2486.2012.02665.x CrossRefGoogle Scholar
  46. 46.
    Kuzyakov Y, Blagodatskaya E, Blagodatsky S (2009) Comments on the paper by Kemmitt et al. (2008) ‘Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective’ [Soil Biol Biochem 40, 61–73]: the biology of the regulatory gate. Soil Biol Biochem 41:435–439. doi: 10.1016/j.soilbio.2008.07.023 CrossRefGoogle Scholar
  47. 47.
    Nannipieri P (2006) Role of stabilized enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, pp 75–94CrossRefGoogle Scholar
  48. 48.
    Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. doi: 10.1016/j.soilbio.2012.11.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lin Chen
    • 1
    • 2
  • Yu Luo
    • 1
  • Jianming Xu
    • 1
  • Zhuyun Yu
    • 1
  • Kaile Zhang
    • 1
  • Philip C. Brookes
    • 1
  1. 1.Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and EnvironmentZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Soil and Sustainable AgricultureInstitute of Soil Science, Chinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations