Advertisement

Microbial Ecology

, Volume 72, Issue 4, pp 943–954 | Cite as

Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla)

  • Klára Vlčková
  • Andres Gomez
  • Klára J. Petrželková
  • Christopher A. Whittier
  • Angelique F. Todd
  • Carl J. Yeoman
  • Karen E. Nelson
  • Brenda A. Wilson
  • Rebecca M. Stumpf
  • David Modrý
  • Bryan A. White
  • Steven R. Leigh
Host Microbe Interactions

Abstract

The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.

Keywords

Gorilla Antibiotics Medical treatment Gastrointestinal microbiome Illumina MiSeq Bacteria 

Notes

Acknowledgments

We express our gratitude to the Government of the Central African Republic and to the World Wildlife Fund for granting permission to conduct our research in the Central African Republic, the Primate Habituation Programme (Dzanga-Ndoki National Park, Dzanga-Sangha Protected Areas) for the logistical support in the field, and all local trackers and assistants from Bai Hokou for their help with sample collection. Moreover, we would like to thank to Zoo Liberec for the financial support during ATB treatment of gorillas. We thank to the Roy J. Carver Biotechnology Center, High-Throughput Sequencing and Genotyping Unit, University of Illinois at Urbana-Champaign for providing the amplicon sequencing using Illumina MiSeq Platform. This publication derives from the HPI-Lab, Laboratory for Infectious Diseases Common to Humans and (Non-Human) Primates, Czech Republic. This work was financially supported by the Internal Grant Agency of University of Veterinary and Pharmaceutical Sciences Brno 47/2013/FVL, by the institutional support of the Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic (RVO 68081766), and co-financed from European Social Fund and State Budget of the Czech Republic (project OPVK CZ.1.07/2.3.00/20.0300). Sequencing was supported by the US National Science Foundation (NSF) 0935347 and the University of Illinois at Urbana-Champaign.

Compliance with Ethical Standards

The non-invasive sample collection was conducted according to the Convention on Human Rights and Biomedicine of the Council of Europe and Directive 86/609/EEC on the Protection of Animals Used for Experimental and Other Scientific Purposes and meet the International Guiding Principles for Biomedical Research Involving Animals, as issued by the Council for International Organizations of Medical Sciences (C.I.O.M.S., c/o WHO, CH 1211 Geneva 27, Switzerland). The research adhered to the legal requirements of the Central African Republic. Importation of the samples to the EU was approved by the State Veterinary Authority of the Czech Republic. The sequencing was conducted under University of Illinois IACUC protocol 11046.

Conflict of Interest

The authors declare that they have no conflict of interests.

Supplementary material

248_2016_745_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16.3 kb)
248_2016_745_MOESM2_ESM.docx (35 kb)
ESM 2 (DOCX 29.0 kb)
248_2016_745_MOESM3_ESM.docx (128 kb)
ESM 3 (DOCX 13 kb)
248_2016_745_MOESM4_ESM.docx (46 kb)
ESM 4 (DOCX 13 kb)
248_2016_745_MOESM5_ESM.docx (14 kb)
ESM 5 (DOCX 13 kb)
248_2016_745_MOESM6_ESM.docx (40 kb)
ESM 6 (DOCX 13 kb)
248_2016_745_MOESM7_ESM.docx (32 kb)
ESM 7 (DOCX 235 kb)
248_2016_745_MOESM8_ESM.docx (11 kb)
ESM 8 (DOCX 91 kb)
248_2016_745_MOESM9_ESM.docx (11 kb)
ESM 9 (DOCX 19 kb)
248_2016_745_MOESM10_ESM.docx (11 kb)
ESM 10 (DOCX 129 kb)
248_2016_745_MOESM11_ESM.docx (13 kb)
ESM 11 (DOCX 57 kb)
248_2016_745_MOESM12_ESM.docx (29 kb)
ESM 12 (DOCX 318 kb)

References

  1. 1.
    Berg R (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435CrossRefPubMedGoogle Scholar
  2. 2.
    Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best practice and research. Clin Gastroenterol 18:299–313Google Scholar
  3. 3.
    Welling GW, Meijer-Severs GJ, Helmus G, van Santen E, Tonk RHJ, de Vries-Hospers HG, van der Waaij D (1991) The effect of ceftriaxone on the anaerobic bacterial flora and the bacterial enzymatic activity in the intestinal tract. Infection 19:313–316CrossRefPubMedGoogle Scholar
  4. 4.
    Jernberg C, Löfmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66CrossRefPubMedGoogle Scholar
  5. 5.
    Yap IKS, Li JV, Saric J, Martin F-P, Davies H, Wang Y, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E (2008) Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7:3718–3728CrossRefPubMedGoogle Scholar
  6. 6.
    Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601CrossRefPubMedGoogle Scholar
  7. 7.
    Panda S, El khader I, Casellas F, Vivancos JL, Cors MG, Santiago A, Cuenca S, Guarner F, Manichanh C (2014) Short-term effect of antibiotics on human gut microbiota. PLoS One 9, e95476CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H, Dridi B, Leprohon P, Plante P-L, Giroux R, Ève B, Frenette J, Boudreau DK, Simard J-L, Chabot I, Domingo M-C, Trottier S, Boissinot M, Huletsky A, Roy PH, Ouellette M, Bergeron MG, Corbeil J (2015) The initial state of the human gut microbiome determines its reshaping by antibiotics ISME J. 1–14Google Scholar
  9. 9.
    Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on host microbiota mutualism. Nat Rev Microbiol 9:233–243CrossRefPubMedGoogle Scholar
  10. 10.
    Carlet J (2012) The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control 1:39CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Janatova M, Albrechtova K, Petrzelkova KJ, Dolejska M, Papousek I, Masarikova M, Cizek A, Todd A, Shutt K, Kalousova B, Profousova-Psenkova I, Modry D, Literak I (2014) Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Vet Microbiol 171:422–431CrossRefPubMedGoogle Scholar
  12. 12.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109:1691–1696CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhao Y, Wu J, Li JV, Zhou N-Y, Tang H, Wang Y (2013) Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 12:2987–2999CrossRefPubMedGoogle Scholar
  15. 15.
    MGVP and WCS (2008) Conservation medicine for gorilla conservation. In: Stoinski TS, Steklis HD, Mehlman PT (eds) Conservation in the 21st Century: Gorillas as a Case Study. Springer Science + Business Media, LLC, pp 57–78Google Scholar
  16. 16.
    Spelman LH, Gilardi KV, Lukasik-Braum M, Kinani JF, Nyirakaragire E, Lowenstine LJ, Cranfield MR (2013) Respiratory disease in mountain gorillas (Gorilla beringei beringei) in Rwanda, 1990–2010: outbreaks, clinical course, and medical management. J Zoo Wildl Med 44:1027–1035CrossRefPubMedGoogle Scholar
  17. 17.
    Szentiks CA, Köndgen S, Silinski S, Speck S, Leendertz FH (2009) Lethal pneumonia in a captive juvenile chimpanzee (Pan troglodytes) due to human-transmitted human respiratory syncytial virus (HRSV) and infection with Streptococcus pneumoniae. J Med Primatol 38:236–240CrossRefPubMedGoogle Scholar
  18. 18.
    Prescott JF (2006) Beta-lactam antibiotics: cephalosporins. In: Giguere S, Prescott JF, Baggot JD, Walker RD, Dowling PM (eds) Antimicrobial therapy in veterinary medicine, 4th edn. Blackwell Publishing, Ames, Iowa, pp 139–158Google Scholar
  19. 19.
    Crane JP, Bryson WL, Anderson YC, Callahan JK, Portis ES, Lindeman CJ, Lucas MJ, Robb EJ (2006) Duration of efficacy of ceftiofur crystalline free acid sterile suspension against clinical disease in grower pigs challenged with Actinobacillus pleuropneumoniae. J Swine Health Prod 14:302–306Google Scholar
  20. 20.
    Collard WT, Cox SR, Lesman SP, Grover GS, Boucher JF, Hallberg JW, Robinson JA, Brown SA (2011) Pharmacokinetics of ceftiofur crystalline-free acid sterile suspension in the equine. J Vet Pharmacol Ther 34:476–481CrossRefPubMedGoogle Scholar
  21. 21.
    Adkesson MJ, Junge RE, Allender MC, Martín-Jiménez T (2012) Pharmacokinetics of a long-acting ceftiofur crystalline-free acid formulation in Asian elephants (Elephas maximus). Am J Vet Res 73:1512–1518CrossRefPubMedGoogle Scholar
  22. 22.
    Meegan J, Collard WT, Grover GS, Pussini N, Bonn WGV, Gulland FMD (2013) Pharmacokinetics of ceftiofur crystalline-free acid (EXCEDE sterile suspension) administered via intramuscular injection in wild California sea lions (Zalophus californianus). J Zoo Wildl Med 44:714–720CrossRefPubMedGoogle Scholar
  23. 23.
    Jeraldo P, Kalari K, Chen X, Bhavsar J, Mangalam A, White B, Nelson H, Kocher JP, Chia N (2014) IM-TORNADO: a tool for comparison of 16S reads from paired-end libraries. PLoS One 9, e114804CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  25. 25.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  27. 27.
    Roberts DW (2013) labdsv: ordination and multivariate analysis for ecology. R package version 1.6-1Google Scholar
  28. 28.
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  29. 29.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10Google Scholar
  30. 30.
    McKenna P, Hoffmann C, Minkah N, Aye P, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, Bushman F (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4:e20CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123–128CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ochman H, Worobey M, Kuo CH, Ndjango JBN, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8, e1000546CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Szekely B, Singh J, Marsh T, Hagedorn C, Werre S, Kaur T (2010) Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. Am J Primatol 72:566–574PubMedGoogle Scholar
  34. 34.
    Harmsen HJM, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527Google Scholar
  35. 35.
    Zoetendal EG, Akkermans ADL, van Vliet WMA, de Visser JGM, de Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health D 13:129–134CrossRefGoogle Scholar
  36. 36.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMedGoogle Scholar
  37. 37.
    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  39. 39.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Marked alternations in the distal gut microbiome linked to diet-induced obesity. Cell Host Microbe 3:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nature 3:1179Google Scholar
  41. 41.
    Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C, Gilad Y (2014) Seasonal variation in human gut microbiome composition. PLoS One 9, e90731CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Omoniyi L, Jewell K, Isah O, Neumann A, Onwuka C, Onagbesan O, Suen G (2013) An analysis of the ruminal bacterial microbiota in West African Dwarf sheep fed grass- and tree-based diets. J Appl Microbiol 11:1094–1105Google Scholar
  43. 43.
    Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340Google Scholar
  44. 44.
    Varel VH, Yen JT (1997) Microbial perspective on fiber utilization by swine. J Anim Sci 75:2715–2722CrossRefPubMedGoogle Scholar
  45. 45.
    Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M, Forsberg CW (2005) Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 187:3739–3751CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131CrossRefPubMedGoogle Scholar
  47. 47.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nakamura N, Amato KR, Garber P, Estrada A, Mackie RI, Gaskins HR (2011) Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol 73:909–919CrossRefPubMedGoogle Scholar
  49. 49.
    Gibson G, Macfarlane S, Macfarlane G (1993) Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol Ecol 12:117–125CrossRefGoogle Scholar
  50. 50.
    Newton D, Cummings J, Macfarlane S, Macfarlane G (1998) Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria. J Appl Microbiol 85:372–380CrossRefPubMedGoogle Scholar
  51. 51.
    Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bernalier-Donadille A (2010) Fermentative metabolism by the human gut microbiota. Gastroentrol Clin Biol 34:S16–S22CrossRefGoogle Scholar
  53. 53.
    Julliand V, de Vaux A, Millet L, Fonty G (1999) Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol 60:3738–3741Google Scholar
  54. 54.
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrazek J, Koppova I, Carbonero F, Ulanov A, Modry D, Todd A, Torralba M, Nelson KE, Gaskins HR, Wilson B, Stumpf RM, White BA, Leigh SR (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565CrossRefPubMedGoogle Scholar
  55. 55.
    Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A 111:16431–1635CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo K-S, Kang D-K (2014) Pyrosequencing based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 52:646–651CrossRefPubMedGoogle Scholar
  57. 57.
    Doran-Sheehy D, Mongo P, Lodwick J, Conklin-Brittain N (2009) Male and female western gorilla diet: preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies. Am J Phys Anthropol 140:727–738CrossRefPubMedGoogle Scholar
  58. 58.
    Argenzio R (1975) Functions of the equine large intestine and their interrelationship in disease. Cornell Vet 65:303–330PubMedGoogle Scholar
  59. 59.
    Boyd L, Houpt KA (1994) Przewalski’s horse: the history and biology of an endangered species. SUNY PressGoogle Scholar
  60. 60.
    Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17:697–728CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sumithra TG, Chaturvedi VK, Susan C, Siju SJ, Rai AK, Harish C, Sunita SC (2013) Mycoplasmosis in wildlife: a review. Eur J Wildl Res 59:769–781CrossRefGoogle Scholar
  62. 62.
    Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R, Gorkiewicz G, Krause R, Gerstgrasser N, Krejs GJ, Hinterleitner TA (2006) Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med 355:2418–2426CrossRefPubMedGoogle Scholar
  63. 63.
    Theriot CM, Young VB (2013) Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Landes Biosci 5:73–82Google Scholar
  64. 64.
    Baba-Moussa L, Ahissou H, Azokpota P, Assogba B, Anagonou MMAS, Keller D, Sanni A, Prévost G (2010) Toxins and adhesion factors associated with Staphylococcus aureus strains isolated from diarrhoeal patients in Benin. Afr J Biotechnol 9:604–611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Klára Vlčková
    • 1
  • Andres Gomez
    • 2
    • 3
  • Klára J. Petrželková
    • 4
    • 5
    • 6
  • Christopher A. Whittier
    • 7
    • 8
  • Angelique F. Todd
    • 9
  • Carl J. Yeoman
    • 10
  • Karen E. Nelson
    • 11
    • 16
  • Brenda A. Wilson
    • 3
    • 12
  • Rebecca M. Stumpf
    • 3
    • 13
  • David Modrý
    • 1
    • 6
    • 14
  • Bryan A. White
    • 3
  • Steven R. Leigh
    • 3
    • 15
  1. 1.Department of Pathology and Parasitology, Faculty of Veterinary MedicineUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  2. 2.J. Craig Venter InstituteLa JollaUSA
  3. 3.Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  5. 5.Liberec ZooLiberecCzech Republic
  6. 6.Institute of ParasitologyBiology Centre of the Academy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  7. 7.Cummings School of Veterinary Medicine at Tufts UniversityNorth GraftonUSA
  8. 8.Department of Wildlife Health SciencesSmithsonian Conservation Biology InstituteWashingtonUSA
  9. 9.WWF, Dzanga Sangha Protected AreasBanguiCentral African Republic
  10. 10.Department of Animal and Range SciencesMontana State UniversityBozemanUSA
  11. 11.J. Craig Venter InstituteRockvilleUSA
  12. 12.Department of MicrobiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  13. 13.Department of AnthropologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  14. 14.CEITEC VFUUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  15. 15.Department of AnthropologyUniversity of Colorado at BoulderBoulderUSA
  16. 16.J. Craig Venter InstituteLa JollaUSA

Personalised recommendations