Microbial Ecology

, Volume 71, Issue 4, pp 1020–1029 | Cite as

Microbial Genomics of a Host-Associated Commensal Bacterium in Fragmented Populations of Endangered Takahe

  • Zoë L. Grange
  • Brett D. Gartrell
  • Patrick J. Biggs
  • Nicola J. Nelson
  • Marti Anderson
  • Nigel P. French
Host Microbe Interactions

Abstract

Isolation of wildlife into fragmented populations as a consequence of anthropogenic-mediated environmental change may alter host-pathogen relationships. Our understanding of some of the epidemiological features of infectious disease in vulnerable populations can be enhanced by the use of commensal bacteria as a proxy for invasive pathogens in natural ecosystems. The distinctive population structure of a well-described meta-population of a New Zealand endangered flightless bird, the takahe (Porphyrio hochstetteri), provided a unique opportunity to investigate the influence of host isolation on enteric microbial diversity. The genomic epidemiology of a prevalent rail-associated endemic commensal bacterium was explored using core genome and ribosomal multilocus sequence typing (rMLST) of 70 Campylobacter sp. nova 1 isolated from one third of the takahe population resident in multiple locations. While there was evidence of recombination between lineages, bacterial divergence appears to have occurred and multivariate analysis of 52 rMLST genes revealed location-associated differentiation of C. sp. nova 1 sequence types. Our results indicate that fragmentation and anthropogenic manipulation of populations can influence host-microbial relationships, with potential implications for niche adaptation and the evolution of micro-organisms in remote environments. This study provides a novel framework in which to explore the complex genomic epidemiology of micro-organisms in wildlife populations.

Keywords

Conservation Disease ecology Epidemiology Reserves Translocation 

Notes

Acknowledgments

This study was funded by the Allan Wilson Centre. We would like to thank L. Howe, A. Reynolds, P. Marsh, J. Marshall, D. Wilkinson, G. Greaves, A. Wilson, B. Jackson, the friends of Tiritiri Matangi for assistance, Department of Conservation and the Maori community for their support.

Compliance with Ethical Standards

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2015_721_MOESM1_ESM.docx (248 kb)
Online resource 1 Online resource 1 contains the list of publically available Campylobacter spp. genomes used (Appendix S1), PERMANOVA results (Appendix S2 and 3), MDS plots (Appendix S4 and 5) and results of the independence test comparing clades and locations (Appendix S6). (DOCX 247 kb)
248_2015_721_MOESM2_ESM.xlsx (166 kb)
Online resource 2 Tables of factors, cofactors, allelic profiles and distance matrices are available in online resource 2. (XLSX 165 kb)

References

  1. 1.
    Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449CrossRefPubMedGoogle Scholar
  2. 2.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefPubMedGoogle Scholar
  3. 3.
    Caillaud D, Craft ME, Meyers LA (2013) Epidemiological effects of group size variation in social species. J R Soc Interface 10:1742–5662CrossRefGoogle Scholar
  4. 4.
    Drewe JA, Eames KTD, Madden JR, Pearce GP (2011) Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: implications for control. Prev Vet Med 101:113–120CrossRefPubMedGoogle Scholar
  5. 5.
    Almberg ES, Cross PC, Dobson AP, Smith DW, Hudson PJ (2012) Parasite invasion following host reintroduction: a case study of Yellowstone’s wolves. Philos Trans R Soc Lond B Biol Sci 367:2840–2851CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nunn CL, Thrall PH, Kappeler PM (2014) Shared resources and disease dynamics in spatially structured populations. Ecol Model 272:198–207CrossRefGoogle Scholar
  7. 7.
    Nunn CL, Thrall PH, Leendertz FH, Boesch C (2011) The spread of fecally transmitted parasites in socially-structured populations. PLoS One 6:e21677. doi: 10.1371/journal.pone.0021677 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cowled BD, Ward MP, Laffan SW, Galea F, Garner MG, MacDonald AJ, Marsh I, Muellner P, Negus K, Quasim S, Woolnough AP, Sarre SD (2012) Integrating survey and molecular approaches to better understand wildlife disease ecology. PLoS One 7:e46310. doi: 10.1371/journal.pone.0046310 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guivier E, Galan M, Chaval Y, Xuereb A, Ribas Salvador A, Poulle ML, Voutilainen L, Henttonen H, Charbonnel N, Cosson JF (2011) Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol Ecol 20:3569–3583PubMedGoogle Scholar
  10. 10.
    Grange ZL, Van Andel M, French NP, Gartrell BD (2014) Network analysis of translocated takahe populations to identify disease surveillance targets. Conserv Biol 28:518–528CrossRefPubMedGoogle Scholar
  11. 11.
    Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  12. 12.
    Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE (2008) Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front Ecol Environ 6:420–429CrossRefGoogle Scholar
  13. 13.
    Grange ZL, Gartrell BD, Biggs PJ, Nelson NJ, Marshall JC, Howe L, Balm GMM, French NP (2015) Using a common commensal bacterium in endangered Takahe, as a model to explore pathogen dynamics in isolated wildlife populations. Conserv Biol 29(5):1327–36CrossRefPubMedGoogle Scholar
  14. 14.
    Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630CrossRefPubMedGoogle Scholar
  15. 15.
    Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38CrossRefPubMedGoogle Scholar
  16. 16.
    Silvy NJ (2012) The wildlife techniques manual. Johns Hopkins University Press, Baltimore, USAGoogle Scholar
  17. 17.
    Wobeser GA (2006) Essentials of disease in wild animals. Blackwell, Ames, USAGoogle Scholar
  18. 18.
    McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300CrossRefPubMedGoogle Scholar
  19. 19.
    Bull CM, Godfrey SS, Gordon DM (2012) Social networks and the spread of Salmonella in a sleepy lizard population. Mol Ecol 21:4386–4392CrossRefPubMedGoogle Scholar
  20. 20.
    Chiyo PI, Grieneisen LE, Wittemyer G, Moss CJ, Lee PC, Douglas-Hamilton I, Archie EA (2014) The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. PLoS One 9:e93408. doi: 10.1371/journal.pone.0093408 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol Conserv 169:136–146CrossRefGoogle Scholar
  22. 22.
    VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2013) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Anim Ecol 83:406–414CrossRefPubMedGoogle Scholar
  23. 23.
    BirdLife International (2013) Porphyrio hochstetteri. www.iucnredlist.org. Accessed 24 February 2014
  24. 24.
    Wickes C, Crouchley D, Maxwell JM (2009) Takahe (Porphorio hochstetteri) recovery plan 2007–2012. Threatened species recovery plan 61. Department of Conservation, WellingtonGoogle Scholar
  25. 25.
    Ballance A (2001) Takahe: the bird that twice came back from the grave. In: The takahe: 50 years of conservation management and research. Otago University Press, Dunedin, New Zealand, pp 18–22Google Scholar
  26. 26.
    French NP, Yu S, Biggs P, Holland B, Fearnhead P, Binney B, Fox A, Grove-White D, Leigh JW, Miller W, Muellner P, Carter P (2014) Evolution of Campylobacter species in New Zealand. In: Sheppard SK (ed) Campylobacter ecology and evolution. Caister Academic Press, Norfolk, UK, pp 221–240Google Scholar
  27. 27.
    Archie EA, Luikart G, Ezenwa VO (2009) Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol Evol 24:21–30CrossRefPubMedGoogle Scholar
  28. 28.
    Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stevenson M (2014) epiR: an R package for the analysis of epidemiological data.Google Scholar
  30. 30.
    Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  31. 31.
    Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. Can J Stat 28:783–798CrossRefGoogle Scholar
  32. 32.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics. doi: 10.1093/bioinformatics/btu153 PubMedCentralGoogle Scholar
  34. 34.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for Eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  38. 38.
    Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UKGoogle Scholar
  39. 39.
    Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UKGoogle Scholar
  40. 40.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  41. 41.
    Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall/ CRC, Boca Raton, FLGoogle Scholar
  42. 42.
    Biek R, O’Hare A, Wright D, Mallon T, McCormick C, Orton RJ, McDowell S, Trewby H, Skuce RA, Kao RR (2012) Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog 8:e1003008. doi: 10.1371/journal.ppat.1003008 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Girard JM, Wagner DM, Vogler AJ, Keys C, Allender CJ, Drickamer LC, Keim P (2004) Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. Proc Natl Acad Sci U S A 101:8408–8413CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bunin JS, Jamieson IG (1995) New approaches toward a better understanding of the decline of takahe (Porphyrio mantelli) in New Zealand. Conserv Biol 9:100–106CrossRefGoogle Scholar
  45. 45.
    Trewick SA, Worthy TH (2001) Origins and prehistoric ecology of takahe based on morphometric, molecular, and fossil data. In: Lee WG, Jamieson IG (eds) The Takahe: 50 years of conservation management and research. Otago University Press, Dunedin, New Zealand, pp 31–48Google Scholar
  46. 46.
    Bunin JS, Jamieson IG, Eason D (1997) Low reproductive success of the endangered takahe Porphyrio mantelli on offshore island refuges in New Zealand. Ibis 139:144–151CrossRefGoogle Scholar
  47. 47.
    Craft ME, Volz E, Packer C, Meyers LA (2009) Distinguishing epidemic waves from disease spillover in a wildlife population. P Roy Soc B Bio 276:1777–1785CrossRefGoogle Scholar
  48. 48.
    Jaros P, Cookson AL, Campbell DM, Duncan GE, Prattley D, Carter P, Besser TE, Shringi S, Hathaway S, Marshall JC, French NP (2014) Geographic divergence of bovine and human shiga toxin-producing Escherichia coli O157:H7 genotypes, New Zealand. Emerg Infect Dis 20:1980–1989CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jamieson IG, Wallis GP, Briskie JV (2006) Inbreeding and endangered species management: is New Zealand out of step with the rest of the world? Conserv Biol 20:38–47CrossRefPubMedGoogle Scholar
  50. 50.
    Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB (2012) Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett 15:235–242CrossRefPubMedGoogle Scholar
  51. 51.
    Ryan CJ, Jamieson IG (1998) Estimating the home range and carrying capacity for takahe on predator free offshore islands: implications for future management. N Z J Ecol 22:17–24Google Scholar
  52. 52.
    Becker DJ, Streicker DG, Altizer S (2015) Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol Lett 18:483–495CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Archie EA, Ezenwa VO (2011) Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. Int J Parasitol 41:89–98CrossRefPubMedGoogle Scholar
  54. 54.
    Gandon S, Nuismer SL (2009) Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat 173:212–224CrossRefPubMedGoogle Scholar
  55. 55.
    Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H, Tollenaere C, Laine A-L (2014) Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344:1289–1293CrossRefPubMedGoogle Scholar
  56. 56.
    Anderson RM, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos Trans R Soc Lond B Biol Sci 314:533–570CrossRefPubMedGoogle Scholar
  57. 57.
    Woodford MH (1993) International disease implications for wildlife translocation. J Zoo Wildl Med 24:265–270Google Scholar
  58. 58.
    Waldenstrom J, Axelsson-Olsson D, Olsen B, Hasselquist D, Griekspoor P, Jansson L, Teneberg S, Svensson L, Ellstrom P (2010) Campylobacter jejuni colonization in wild birds: results from an infection experiment. PLoS One 5:e9082. doi: 10.1371/journal.pone.0009082 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vo AT, Jedlicka JA (2014) Protocols for metagenomic DNA extraction and Illumina amplicon library preparation for faecal and swab samples. Mol Ecol Resour 14:1183–1197CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zoë L. Grange
    • 1
    • 2
    • 3
  • Brett D. Gartrell
    • 1
    • 3
  • Patrick J. Biggs
    • 1
    • 2
  • Nicola J. Nelson
    • 4
  • Marti Anderson
    • 5
  • Nigel P. French
    • 1
    • 2
  1. 1.Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  2. 2.mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  3. 3.Wildbase, Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  4. 4.Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  5. 5.Allan Wilson Centre for Molecular Ecology and Evolution, New Zealand Institute for Advanced StudyMassey UniversityAlbanyNew Zealand

Personalised recommendations