Microbial Ecology

, Volume 71, Issue 1, pp 100–112 | Cite as

Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments

  • Lilian M. Guibert
  • Claudia L. Loviso
  • Sharon Borglin
  • Janet K. Jansson
  • Hebe M. Dionisi
  • Mariana Lozada
Environmental Microbiology


We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.


Alkane monooxygenase Coastal sediments Bacteroidetes Actinomycetes Planctomycetes Metagenomics 



At the time of this study, LMG and CLL were recipients of a graduate student fellowship from the Argentinean National Research Council (CONICET). ML and HMD are staff members from CONICET. This work was funded by grants from CONICET, the National Agency for the Promotion of Science and Technology (ANPCyT, Argentina) and by the Pacific Northwest National Laboratory under contract number DE-AC05-76RL01830. Shotgun sequencing and annotation were conducted through the Community Sequencing Program (CSP 328) of the US Department of Energy Joint Genome Institute (JGI), a DOE Office of Science User Facility under Contract No. DE-AC02-05CH11231. We would like to thank Ricardo Vera and Horacio Ocariz for their help in sample collection.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2015_698_MOESM1_ESM.pdf (114 kb)
Online Resource 1 Supplementary materials and methods (PDF 114 kb)
248_2015_698_MOESM2_ESM.pdf (64 kb)
Online Resource 2 Details of OTU-based analysis of 16S rRNA gene amplicon sequences (PDF 64 kb)
248_2015_698_MOESM3_ESM.pdf (78 kb)
Online Resource 3 Taxonomic assignment of the most abundant 16S rRNA gene amplicon sequences using QIIME (PDF 78 kb)
248_2015_698_MOESM4_ESM.pdf (76 kb)
Online Resource 4 Details of OTU-based analysis of putative AlkB sequences identified in the metagenomic dataset (PDF 76 kb)
248_2015_698_MOESM5_ESM.pdf (128 kb)
Online Resource 5 Relative abundance of OTUs of putative AlkB sequences (PDF 127 kb)
248_2015_698_MOESM6_ESM.pdf (88 kb)
Online Resource 6 Complete names of the reference AlkB sequences used for phylogenetic placement (PDF 88 kb)
248_2015_698_MOESM7_ESM.pdf (28 kb)
Online Resource 7 Results of the phylogenetic placement using the complete AlkB dataset. The tree was constructed by maximum likelihood in RAxML v.8.2.3 and visualized in pplacer/guppy. Reference sequences used for placement are indicated with their GenBank accession number. The full names are provided in Online Resource 6. In red, branches where sequences have been placed, with the width of these branches being proportional to the number of sequences placed in that branch. The likelihood weight ratio (a measure of the certainty of the placement of the sequences [69]) was 0.53 ± 0.27 (PDF 28 kb)
248_2015_698_MOESM8_ESM.pdf (73 kb)
Online Resource 8 Alignment of full-length AlkB sequences identified in the metagenomic dataset and in the fosmid library. The positions of the four conserved histidine-containing motifs (His 1, His 2, HYG, and His 3), and of the six transmembrane segments (I–VI) are indicated by boxes and dotted lines, respectively. CAB54050: Pseudomonas putida GPo1 alkane-1 - monooxygenase (PDF 73 kb)
248_2015_698_MOESM9_ESM.pdf (104 kb)
Online Resource 9 Details of the coding sequences predicted in fosmid clones No. 401 and 964 (PDF 103 kb)
248_2015_698_MOESM10_ESM.pdf (28 kb)
Online Resource 10 Phylogenetic analysis of the 23S rRNA gene fragment from fosmid No. 401 and related sequences from strains belonging to the Planctomycetes phylum. The tree was constructed with MEGA 5 software using the Maximum Likelihood algorithm. The GenBank accession number of the reference sequences is indicated first. The sequence fragment from this study is shown in bold type. Only bootstrap values ≥70 % (1000 repetitions) are shown. Sequences from members of Verrucomicrobia, Bacteroidetes, Chlamydia, and Lentisphaera phyla were used as outgroup. The scale bar represents 0.05 nucleotide substitutions per site (PDF 28 kb)


  1. 1.
    Commendatore MG, Esteves JL (2007) An assessment of oil pollution in the coastal zone of Patagonia, Argentina. Env Manage 40:814–821. doi: 10.1007/s00267-005-0221-3
  2. 2.
    Commendatore MG, Nievas ML, Amin O, Esteves JL (2012) Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Mar Env Res 74:20–31. doi: 10.1016/j.marenvres.2011.11.010 CrossRefGoogle Scholar
  3. 3.
    Sargian P, Mas S, Pelletier É, Demers S (2007) Multiple stressors on an Antarctic microplankton assemblage: water soluble crude oil and enhanced UVBR level at Ushuaia (Argentina). Polar Biol 30:829–841. doi: 10.1007/s00300-006-0243-1 CrossRefGoogle Scholar
  4. 4.
    Gil MN, Torres AI, Amin O, Esteves JL (2011) Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem. Beagle Channel (Southern Argentina). Mar Pollut Bull 62:201–207. doi: 10.1016/j.marpolbul.2010.10.004 CrossRefPubMedGoogle Scholar
  5. 5.
    Dionisi HM, Lozada M, Marcos MS, Di Marzio WD (2011) Aromatic hydrocarbon degradation genes from chronically polluted subantarctic marine sediments. In: de Bruijn FJ (ed) Handbook of Molecular Microbial Ecology II: Metagenomics in Different Habitats. John Wiley & Sons, Inc., Hoboken, pp 461–473Google Scholar
  6. 6.
    Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M (2012) Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microb Ecol 64:605–616. doi:10.1007/s00248-012-0051-9Google Scholar
  7. 7.
    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. doi: 10.1016/j.copbio.2007.04.006
  8. 8.
    Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014. doi: 10.1016/j.procbio.2005.12.007 CrossRefGoogle Scholar
  9. 9.
    Wentzel A, Ellingsen TE, Kotlar H-K et al (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. doi: 10.1007/s00253-007-1119-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front. Microbiol. 4:116. doi:  10.3389/fmicb.2013.00116
  11. 11.
    Rojo F (2009) Degradation of alkanes by bacteria. Env Microbiol 11:2477–2490. doi: 10.1111/j.1462-2920.2009.01948.x CrossRefGoogle Scholar
  12. 12.
    van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. doi: 10.1007/s00253-006-0748-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Pérez-de-Mora A, Engel M, Schloter M (2010) Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microb Ecol 62:959–972. doi: 10.1007/s00248-011-9858-z CrossRefGoogle Scholar
  14. 14.
    Jurelevicius D, Marques Alvarez V, Peixoto R, Rosado AS, Seldin L (2013) The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One 8, e66565. doi: 10.1371/journal.pone.0066565
  15. 15.
    Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Env Microbiol 11:669–673. doi: 10.1111/j.1462-2920.2008.01843.x CrossRefGoogle Scholar
  16. 16.
    Wasmund K, Burns KA, Kurtböke DI, Bourne DG (2009) Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Env Microbiol 75:7391–7398. doi: 10.1128/AEM.01370-09
  17. 17.
    Wang W, Wang L, Shao Z (2010) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60:429–439. doi: 10.1007/s00248-010-9724-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Smith CB, Tolar BB, Hollibaugh JT, King GM (2013) Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton. Front Microbiol 4:370. doi: 10.3389/fmicb.2013.00370
  19. 19.
    Xu K, Tang Y, Ren C, Zhao K, Sun Y (2013) Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field. Biogeosciences 10:2041–2048. doi: 10.5194/bg-10-2041-2013
  20. 20.
    Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B (2014) Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnol Bioeng 111:1820–1830. doi: 10.1002/bit.25248
  21. 21.
    Nie Y, Chi C-Q, Fang H, Liang J-L, Lu S-L, Lai G-L, Tang Y-Q, Wu X-L (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968. doi: 10.1038/srep04968
  22. 22.
    Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK  (2014) Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5:130. doi: 10.3389/fmicb.2014.00130
  23. 23.
    Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK  (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371. doi: 10.1038/nature10576
  24. 24.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303
  25. 25.
    Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M Liolios K, Pagani I, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129Google Scholar
  26. 26.
    Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560. doi: 10.1101/gr.120618.111
  27. 27.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma Oxf Engl 22:1658–1659. doi: 10.1093/bioinformatics/btl158 CrossRefGoogle Scholar
  28. 28.
    Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302. doi: 10.1093/sysbio/syr010 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Loviso CL, Lozada M, Guibert LM, Dionisi H (2015) Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 119:411–424. doi: 10.1111/jam.12843 CrossRefPubMedGoogle Scholar
  30. 30.
    Olivera NL, Nievas ML, Lozada M, Del Prado G, Dionisi HM, Siñeriz F (2009) Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res Microbiol 160:19–26. doi: 10.1016/j.resmic.2008.09.011
  31. 31.
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. doi: 10.1093/nar/gkt1226
  32. 32.
    Patil KR, Roune L, McHardy AC (2012) The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS One 7, e38581. doi: 10.1371/journal.pone.0038581
  33. 33.
    Smits TH, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Env Microbiol 1:307–317. doi: 10.1046/j.1462-2920.1999.00037.x CrossRefGoogle Scholar
  34. 34.
    van Beilen JB, Smits TH, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187:85–91. doi: 10.1128/JB.187.1.85-91.2005
  35. 35.
    Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci 96:3801–3806. doi: 10.1073/pnas.96.7.3801 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Sierra-García IN, Correa Alvarez J, Pantaroto de Vasconcellos S, Pereira de Souza A, dos Santos Neto EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from brazilian petroleum reservoirs. PLoS One 9, e90087. doi: 10.1371/journal.pone.0090087
  37. 37.
    Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249. doi: 10.1016/j.copbio.2006.05.005
  38. 38.
    Ward NL, Rainey FA, Hedlund BP, Staley JT, Ludwig W, Stackebrandt E (2000) Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia: 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. Int J Syst Evol Microbiol 6:1965–1972. doi: 10.1099/00207713-506-1965
  39. 39.
    Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397CrossRefPubMedGoogle Scholar
  40. 40.
    Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AMRiela S, Puglia AM (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline J Appl Microbiol 104:251–259. doi: 10.1111/j.1365-2672.2007.03544.x
  41. 41.
    Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D (2015) Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. Environ Sci Pollut Res Int 22:15215-15229. doi:  10.1007/s11356-015-4240-1
  42. 42.
    Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D,  Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475. doi: 10.1038/ismej.2013.254
  43. 43.
    Paisse S, Duran R, Coulon F, Goñi-Urriza M (2011) Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl Microbiol Biotechnol 92:835–844. doi: 10.1007/s00253-011-3381-5 CrossRefPubMedGoogle Scholar
  44. 44.
    Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee Y-J, Mason OU, Dubinsky EA, Chavarria KL,Tom LM, Fortney JL, Lamendella R, Jansson JK, D'haeseleer P, HazenTC, Zhou J (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6:451–460. doi: 10.1038/ismej.2011.91
  45. 45.
    Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J. doi: 10.1038/ismej.2015.5
  46. 46.
    Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4:89. doi: 10.3389/fmicb.2013.00089 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Mark Welch DB, Martiny JBH, Sogin M, Boetius A, Ramette A (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6, e24570. doi: 10.1371/journal.pone.0024570
  48. 48.
    Fernandez-Gomez B, Richter M, Schuler M, Pinhassi J, Acinas SG, Gonzalez JM, Pedrós-Alió C (2013) Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7:1026–1037. doi: 10.1038/ismej.2012.169
  49. 49.
    Moriya K, Horikoshi K (2002) Microorganism belong to the genus Flavobacterium, hydrocarbon emulsifier and solubilizer and separation method for organic-solvent tolerant microorganism. Patent US 5342778 AGoogle Scholar
  50. 50.
    van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Env Microbiol 6:264–273. doi: 10.1111/j.1462-2920.2004.00567.x
  51. 51.
    Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5: A. dieselolei alkane hydroxylases. Environ Microbiol 13:1168–1178. doi: 10.1111/j.1462-2920.2010.02416.x
  52. 52.
    Buchan A, González JM (2010) Roseobacter. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology Springer-Verlag, Berlin Heidelberg, pp 1335–1344Google Scholar
  53. 53.
    Kim BS, Kim SY, Park J, Hwang KY, Yoon YJ, Oh WK, Kim BY, Ahn JS (2007) Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library. J Appl Microbiol 102:1392–1400. doi: 10.1111/j.1365-2672.2006.03169.x
  54. 54.
    Brakstad OG, Lodeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103. doi: 10.1007/s00248-003-0225-6 CrossRefPubMedGoogle Scholar
  55. 55.
    Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Env Microbiol 9:177–186. doi: 10.1111/j.1462-2920.2006.01126.x
  56. 56.
    Lanfranconi MP, Bosch R, Nogales B (2010) Short-term changes in the composition of active marine bacterial assemblages in response to diesel oil pollution. Microb Biotechnol 3:607–621. doi: 10.1111/j.1751-7915.2010.00192.x
  57. 57.
    McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Env Microbiol 9:165–176. doi: 10.1111/j.1462-2920.2006.01125.x
  58. 58.
    Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303. doi: 10.1073/pnas.1431443100
  59. 59.
    Woebken D, Teeling H, Wecker P, Dumitriu A, Kostadinov I, Delong EF, Amann R, Glöckner FO (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1:419–435. doi: 10.1038/ismej.2007.63
  60. 60.
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, de Beer D, Dubilier N, Amann R (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol 29:333–348. doi: 10.1016/j.syapm.2005.12.006
  61. 61.
    Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1370. doi: 10.1111/j.1462-2920.2006.01029.x
  62. 62.
    Pereira G, Terenziani E, Lage OM (2010) Hydrocarbon degradation by Planctomycetes. Libro Resúmenes p 268. IJUP 10, 3er Encontro Investigação Jovem, Universidade do Porto, PortugalGoogle Scholar
  63. 63.
    Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004. doi: 10.1038/nbt1232
  64. 64.
    Haspel G, Ehrt S, Hillen W (1995) Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1. Microbiology 141:1425–1432. doi: 10.1099/13500872-141-6-1425 CrossRefPubMedGoogle Scholar
  65. 65.
    Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823. doi: 10.1128/JB.183.5.1819-1823.2001
  66. 66.
    Cappelletti M, Fedi S, Frascari D, Ohtake H, Turner RJ, Zannoni D (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Env Microbiol 77:1619–1627. doi: 10.1128/AEM.01987-10
  67. 67.
    Wang W, Shao Z (2012) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol 94:437–448. doi: 10.1007/s00253-011-3818-x CrossRefPubMedGoogle Scholar
  68. 68.
    Procópio L, de Cassia Pereira e Silva M, van Elsas JD, Seldin L (2013) Transcriptional profiling of genes involved in n-hexadecane compounds assimilation in the hydrocarbon degrading Dietzia cinnamea P4 strain. Braz J Microbiol 44:639–647. doi: 10.1590/S1517-83822013000200044
  69. 69.
    Matsen FA, Hoffman NG, Gallagher A, Stamatakis A (2012) A format for phylogenetic placements. PLoS One 7, e31009. doi: 10.1371/journal.pone.0031009 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lilian M. Guibert
    • 1
  • Claudia L. Loviso
    • 1
  • Sharon Borglin
    • 2
  • Janet K. Jansson
    • 3
  • Hebe M. Dionisi
    • 1
  • Mariana Lozada
    • 1
  1. 1.Laboratorio de Microbiología AmbientalCentro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET)Puerto MadrynArgentina
  2. 2.Energy Geosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Earth and Biological Sciences DirectoratePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations