Advertisement

Microbial Ecology

, Volume 71, Issue 3, pp 628–633 | Cite as

Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils

  • Paola Lavin
  • Sandra Gómez de Saravia
  • Patricia Guiamet
Environmental Microbiology

Abstract

Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.

Keywords

Biodeterioration Fungi Microatmosphere method Paper 

Notes

Acknowledgments

The authors would like to thank the National University of La Plata (UNLP 11N713 and 11X 632), CONICET PIP 0200 and CICBA 833/14 for the grants received to finance this work. The authors are grateful to Arch. María de la Paz Diulio and Lic. Patricia Battistoni for their technical support and to Lic. Juan Carlos Alvarez Gelves and Dr. Silvia Ametrano for allowing microbial sampling on AHCR and HAMLP, respectively.

References

  1. 1.
    Allsopp D, Seal K, Gaylarde C (2004) Introduction to biodeterioration, 2nd edn. Cambridge University Press, USACrossRefGoogle Scholar
  2. 2.
    Guiamet P, Oliva F, Gallego M, Gómez de Saravia S (2008) Biodeterioration: an applied case for rock art in the Ventania Hill System (Buenos Aires, Argentina). O público e o privado 12:105–120Google Scholar
  3. 3.
    Saiz-Jimenez C (2012) Microbiological and environmental issues in show caves. World J Microbiol Biotechnol 28:2453–2464. doi: 10.1007/s11274-012-1070-x CrossRefPubMedGoogle Scholar
  4. 4.
    De Leo F, Iero A, Zammit G, Urzì CE (2012) Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int J Speleol 41:125–136. doi: 10.5038/1827-806X.41.2.1 CrossRefGoogle Scholar
  5. 5.
    Cuezva S, Fernandez-Cortes A, Porca E, Pašic L, Jurado V, Hernandez-Marine M, Serrano-Ortiz P, Hermosin B, Cañaveras JC, Sanchez-Moral S, Saiz-Jimenez C (2012) The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol Ecol 281:81–90. doi: 10.1111/j.1574-6941.2012.01391.x Google Scholar
  6. 6.
    Pietrzak K, Gutarowska B, Machnowski W, Mikołajczyk U (2015) Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Text Res J 0(00): 1–11 doi: 10.1177/0040517515596933
  7. 7.
    Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodet Biodegrad 46:181–188. doi: 10.1016/S0964-8305(00)00063-9 CrossRefGoogle Scholar
  8. 8.
    De Paolis MR, Lippi D (2008) Use of metabolic and molecular methods for the identification of a Bacillus strain isolated from paper affected by foxing. Microbiol Res 163:121–131. doi: 10.1016/j.micres.2007.06.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Zotti M, Ferroni A, Calvini P (2011) Mycological and FTIR analysis of biotic foxing on paper substrates. Int Biodet Biodegrad 65:569–578. doi: 10.1016/j.ibiod.2010.01.011 CrossRefGoogle Scholar
  10. 10.
    Ardelean E, Melniciuc-Puică N (2013) Conservation of paper documents damaged by foxing. Eur J Sci Theol 9(2):117–124Google Scholar
  11. 11.
    Borrego S, Guiamet P, Gómez de Saravia S, Battistoni P, García M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodet Biodegrad 64:139–145. doi: 10.1016/j.ibiod.2009.12.005 CrossRefGoogle Scholar
  12. 12.
    Strzelczyk AB (2004) Observations on aesthetic and structural changes induced in Polish historic objects by microorganisms. Int Biodet Biodegrad 53:151–156. doi: 10.1016/S0964-8305(03)00088-X CrossRefGoogle Scholar
  13. 13.
    Michaelsen A, Pinzari F, Ripka K, Lubitz W, Pinar G (2006) Application of molecular techniques for identification of fungal communities colonizing paper material. Int Biodet Biodegrad 58:133–141. doi: 10.1016/j.ibiod.2006.06.019 CrossRefGoogle Scholar
  14. 14.
    Gutarowska B, Skora J, Zduniak K, Rembisz D (2012) Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int Biodet Biodegrad 68:7–17. doi: 10.1016/j.ibiod.2011.12.002 CrossRefGoogle Scholar
  15. 15.
    Piantanida G, Pinzari F, Montanari M, Bicchieri M, Coluzza C (2006) Atomic force microscopy applied to the study of Whatman paper surface deteriorated by a cellulolytic filamentous fungus. Macromol Symp 238:92–97. doi: 10.1002/masy.200650613 CrossRefGoogle Scholar
  16. 16.
    Le Borgne S, Romero JM, Videla HA, González JM, Saiz-Jiménez C (2007) Practical cases of the use of molecular techniques to characterize microbial deterioration of metallic structures in industry. Paper 07523. Corrosion/2007. NACE International, HoustonGoogle Scholar
  17. 17.
    Piñar G, Sterflinger K, Ettenauer J, Quandt A, Pinzari F (2015) A combined approach to assess the microbial contamination of the Archimedes Palimpsest. Microb Ecol 69:118–134. doi: 10.1007/s00248-014-0481-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    González JM, Saiz-Jiménez C (2005) Application of molecular nucleic acid-base techniques for the study of microbial communities in monuments and artworks. Int Microbiol 8:189–194PubMedGoogle Scholar
  19. 19.
    Lavin P, Gómez de Saravia SG, Guiamet PS (2014) An environmental assessment of biodeterioration in document repositories. Biofouling 30:561–569. doi: 10.1080/08927014.2014.897334 CrossRefPubMedGoogle Scholar
  20. 20.
    Caneva G, Nugari MP, Salvadori O (1991) Biology in the conservation of work of art. ICCROM, RomeGoogle Scholar
  21. 21.
    Poulsen PK, Lindelov (1978) Acceleration of chemical reactions due to freexing. In: Rocalland LB, Stewart GF (eds) Water activity influences on food quality. Academic, New York, pp 650–678Google Scholar
  22. 22.
    Florian M-LE (1993) Conidial fungi (mould) activity on artifact materials. A new look at prevention, control and eradication. Preprints, International Council of Museums 10th Triennial Meeting. ICOM Paris, Washington D.C., pp 868–874Google Scholar
  23. 23.
    Gómez de Saravia S, Gaylarde CC (1998) The antimicrobial activity of an aqueous extract of Brassica nigra. Int Biodet Biodegrad 41:145–148. doi: 10.1016/S0964-8305(98)00006-7 CrossRefGoogle Scholar
  24. 24.
    Guiamet P, Gómez de Saravia S (2005) Laboratory studies of biocorrosion control using traditional and environmentally friendly biocides: an overview. Latin Am Appl Res 35:295–300Google Scholar
  25. 25.
    Guiamet P, Gómez de Saravia S, Arenas P, Pérez ML, de la Paz J, Borrego S (2006) Natural products isolated from plants used in biodeterioration control. Pharmacologyonline 3:534–544Google Scholar
  26. 26.
    Guiamet P, de la Paz NJ, Arenas P, Gómez de Saravia S (2008) Differential sensitivity of Bacillus sp. isolated from archive materials to plant extracts. Pharmacologyonline 3:649–658Google Scholar
  27. 27.
    Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18:435–448. doi: 10.1002/ptr.1465 CrossRefPubMedGoogle Scholar
  28. 28.
    Bell L, Faye B (1980) Tolerance range for the conservation of paper documents. Building design of archives in tropical countries, 1st edn. UNESCO, ParisGoogle Scholar
  29. 29.
    Pinzari F, Montanari M, Michaelsen A, Piñar G (2010) Analytical protocols for the assessment of biological damage in historical documents. Coalition 19:6–13, http://www.rtphc.csic.es/issue19.htm Google Scholar
  30. 30.
    Guiamet P, Borrego S, Lavin P, Perdomo I, Gómez de Saravia S (2011) Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids Surf B 85:229–234. doi: 10.1016/j.colsurfb.2011.02.031 CrossRefGoogle Scholar
  31. 31.
    Madigan MT, Martinko JM, Dunlap P, Clark D (2009) Brock biology of microorganisms, 12ª ed. Benjamin Cummings, San Francisco, pp 1168Google Scholar
  32. 32.
    Barnett HL, Hunter BB (1987) Illustrated genera of imperfect fungi, 3rd edn. Burgess Publishing, MinneapolisGoogle Scholar
  33. 33.
    Klich MA, Pitt JI (1994) A laboratory guide to common Aspergillus species and their teleomorphs. CSIRO, Division of Food Processing, North RydeGoogle Scholar
  34. 34.
    Borrego S, Valdés O, Vivar I, Lavin P, Guiamet P, Battistoni P, Gómez de Saravia S, Borges P (2012) Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine documentary heritage. ISRN Microbiol Vol 2012, Art ID 826786:7. doi: 10.5402/2012/826786
  35. 35.
    Gómez de Saravia S, Borrego S, Lavin P, Valdés O, Vivar I, Battistoni P, Guiamet P (2013) Environmentally friendly products from plants in the control of biodeteriogen agents. Nat Prod - An Indian J 9:167–164Google Scholar
  36. 36.
    Florian MLE (2004) Fungal facts. Solving fungal problems in heritage collections. Archetype Publications Ltd., LondonGoogle Scholar
  37. 37.
    Abrusci C, Marquina D, Del Amo A, Catalina F (2007) Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int Biodet Biodegrad 60(3):137–143. doi: 10.1016/j.ibiod.2007.01.005 CrossRefGoogle Scholar
  38. 38.
    Borrego S, Lavin P, Perdomo I, Gomez de Saravia S, Guiamet P (2012) Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol, Vol 2012, Art ID 680598:10. doi: 10.5402/2012/680598
  39. 39.
    Gost J, Bermejo B, Rivero M, Espatolero M, Polo I, Saínz de Murieta J (2000) Vigilancia y control de las infecciones originadas por gérmenes oportunistas: aspergilosis. An Sist Sanit Navarra 23:185–192Google Scholar
  40. 40.
    Valentín N (2004) Diseño y propuestas para el control y la erradicación del biodeterioro. Microorganismos e insectos [Design and proposals for monitoring and eradication of biodeterioration. Microorganisms and insects]. In: Spanish Historical Heritage Institute, editors. Jornadas Monográficas para la Prevención del Biodeterioro en Archivos y Bibliotecas [Monographic Sessions for the Prevention of Biodeterioration in Archives and Libraries], 2004 Jun 14–15, Madrid: 84–89Google Scholar
  41. 41.
    Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art-tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646. doi: 10.1007/s00253-013-5283-1 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rakotonirainy MS, Benaud O, Vilmont LB (2015) Contribution to the characterization of foxing stains on printed books using infrared spectroscopy and scanning electron microscopy energy dispersive spectrometry. Int Biodeter Biodegrad 101:1–7. doi: 10.1016/j.ibiod.2015.02.031 CrossRefGoogle Scholar
  43. 43.
    Herrera LK, Le Borgne S, Videla HA (2008) Modern methods for materials characterization and surface analysis to study the effects of biodeterioration and weathering on buildings of cultural heritage. Int J Archit Herit 3:74–91. doi: 10.1080/15583050802149995 CrossRefGoogle Scholar
  44. 44.
    Herrera LK, Videla HA (2009) Surface analysis and material characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeter Biodegrad 63:813–822. doi: 10.1016/j.ibiod.2011.12.002 CrossRefGoogle Scholar
  45. 45.
    Valentín N (2010) Microorganisms in museum collections. Coalition 19:2–6, ISSN 1579–8410Google Scholar
  46. 46.
    Rakotonirainy MS, Lavedrine B (2005) Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int Biodeter Biodegrad 55:141–147. doi: 10.1016/j.ibiod.2004.10.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Paola Lavin
    • 1
  • Sandra Gómez de Saravia
    • 1
    • 2
  • Patricia Guiamet
    • 1
    • 3
  1. 1.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias ExactasUNLP, CCT La Plata-CONICETLa PlataArgentina
  2. 2.Facultad de Ciencias Naturales y Museo-UNLP-CICBALa PlataArgentina
  3. 3.Facultad de Ciencias Veterinarias-UNLP-CONICETLa PlataArgentina

Personalised recommendations