Advertisement

Microbial Ecology

, Volume 71, Issue 2, pp 326–338 | Cite as

Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond

  • Addis Simachew
  • Anders Lanzén
  • Amare Gessesse
  • Lise Øvreås
Microbiology of Aquatic Systems

Abstract

The effect of salinity on prokaryotic community diversity in Abijata-Shalla Soda Ash Concentration Pond system was investigated by using high-throughput 16S rRNA gene 454 pyrosequencing. Surface water and brine samples from five sites spanning a salinity range of 3.4 % (Lake Abijata) to 32 % (SP230F, crystallizer pond) were analyzed. Overall, 33 prokaryotic phyla were detected, and the dominant prokaryotic phyla accounted for more than 95 % of the reads consisting of Planctomycetes, Bacteroidetes, candidate division TM7, Deinococcus-Thermus, Firmicutes, Actinobacteria, Proteobacteria, and Euryarchaeota. Diversity indices indicated that operational taxonomic unit (OTU) richness decreases drastically with increasing salinity in the pond system. A total of 471 OTUs were found at 3.4 % salinity whereas 49 OTUs were detected in pond SP211 (25 % salinity), and only 19 OTUs in the crystallization pond at 32 % salinity (SP230F). Along the salinity gradient, archaeal community gradually replaced bacterial community. Thus, archaeal community accounted for 0.4 % in Lake Abijata while 99.0 % in pond SP230F. This study demonstrates that salinity appears to be the key environmental parameter in structuring the prokaryotic communities of haloalkaline environments. Further, it confirmed that the prokaryotic diversity in Lake Abijata is high and it harbors taxa with low or no phylogenetic similarities to existing prokaryotic taxa and thus represents novel microorganisms.

Keywords

Abijata Prokaryotes Soda ash Salinity 

Notes

Acknowledgments

This work was supported by the Norwegian Programme for Development, Research and Education (NUFU) project no. 10069/2007 and the School of Graduate Studies, Addis Ababa University.

Conflict of interest

The authors are responsible for all of the contents of the manuscript and it has not been or will not be submitted elsewhere.

Supplementary material

248_2015_675_MOESM1_ESM.docx (71 kb)
Fig. S1 (DOCX 71 kb)
248_2015_675_MOESM2_ESM.docx (47 kb)
Fig. S2 (DOCX 46 kb)
248_2015_675_MOESM3_ESM.docx (18 kb)
Table S1 (DOCX 17 kb)
248_2015_675_MOESM4_ESM.docx (46 kb)
Table S2 (DOCX 46 kb)
248_2015_675_MOESM5_ESM.docx (27 kb)
Table S3 (DOCX 27 kb)

References

  1. 1.
    Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  2. 2.
    Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295. doi: 10.1016/j.femsec.2005.02.012 CrossRefPubMedGoogle Scholar
  3. 3.
    Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71. doi: 10.1007/s00792-003-0361-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55:163–172. doi: 10.1007/s00248-007-9264-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476. doi: 10.1038/ismej.2012.137 CrossRefPubMedGoogle Scholar
  6. 6.
    Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44. doi: 10.3389/fmicb.2011.00044 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Ovreas L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of ethiopian soda lakes. PLoS One 8, e72577. doi: 10.1371/journal.pone.0072577 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Mwirichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2011) Bacterial diversity in the haloalkaline Lake Elmenteita, Kenya. Curr Microbiol 62:209–221. doi: 10.1007/s00284-010-9692-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260Google Scholar
  10. 10.
    Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348. doi: 10.1007/s00792-010-0311-x CrossRefPubMedGoogle Scholar
  11. 11.
    Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158:29–67CrossRefGoogle Scholar
  12. 12.
    Kebede E (2002) Phytoplankton distribution in lakes of the Ethiopian Rift Valley. Ethiopian Rift Valley Lakes Backhuys, Leiden, pp 61–93Google Scholar
  13. 13.
    Gessesse A (1997) The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technol 62:59–61CrossRefGoogle Scholar
  14. 14.
    Hatti-Kaul R, Mattiasson B, Gessesse A (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microbial Tech 32:519–524CrossRefGoogle Scholar
  15. 15.
    Martins R, Davids W, Al-Soud W, Levander F, Rådström P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144. doi: 10.1007/s007920100183 CrossRefPubMedGoogle Scholar
  16. 16.
    Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440PubMedGoogle Scholar
  17. 17.
    Duckworth AW, Grant WD, Jones BE, Rv S (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecolol 19:181–191CrossRefGoogle Scholar
  18. 18.
    Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. doi: 10.1128/AEM.01996-06 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485. doi: 10.1128/AEM.00767-06 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466. doi: 10.1111/j.1462-2920.2012.02799.x PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ayenew T, Legesse D (2007) The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes Reserv: Res Manage 12:149–165CrossRefGoogle Scholar
  22. 22.
    Ayenew T (2004) Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970. Reg environ change 4:192–204CrossRefGoogle Scholar
  23. 23.
    Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. SpringerGoogle Scholar
  24. 24.
    Legesse D, Vallet‐Coulomb C, Gasse F (2004) Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (Main Ethiopian Rift Valley) to changes in climate and human activities. Hydrol processes 18:487–504CrossRefGoogle Scholar
  25. 25.
    Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. doi: 10.1038/sj/jim/7000176 CrossRefPubMedGoogle Scholar
  26. 26.
    Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115CrossRefPubMedGoogle Scholar
  27. 27.
    Bengtsson MM, Sjotun K, Lanzen A, Ovreas L (2012) Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J 6:2188–2198. doi: 10.1038/ismej.2012.67 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi: 10.1186/1471-2105-12-38 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lanzén A, Jorgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Ovreas L, Urich T (2012) CREST--classification resources for environmental sequence tags. PLoS One 7, e49334. doi: 10.1371/journal.pone.0049334 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version: 2Google Scholar
  32. 32.
    32. Colwell RK (2013) Stasttical Estimation of Species Richness and Shared Species from Samples University of Connecticut, USA. http://purl.oclc.org/estimates. 2013
  33. 33.
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264CrossRefGoogle Scholar
  34. 34.
    Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27CrossRefPubMedGoogle Scholar
  35. 35.
    Kebede E (1996) Anabaenopsis abzjatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethiopian Rift. Algological Studies 80:1–8Google Scholar
  36. 36.
    Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617. doi: 10.1007/s00248-006-9193-y CrossRefPubMedGoogle Scholar
  37. 37.
    Casamayor EO, Massana R, Benlloch S, Ovreas L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodriguez-Valera F, Pedros-Alio C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348CrossRefPubMedGoogle Scholar
  38. 38.
    Benlloch S, López‐López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360CrossRefPubMedGoogle Scholar
  39. 39.
    Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267Google Scholar
  40. 40.
    Hollister EB, Engledow AS, Hammett AJ, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838. doi: 10.1038/ismej.2010.3 CrossRefPubMedGoogle Scholar
  41. 41.
    Oren A (2011) Ecology of Halophiles. In: Bull AT, Robb FT, Stetter KO (eds) Horikoshi, K. Springer, Extremophiles Handbook, pp 344–361Google Scholar
  42. 42.
    Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. MicrobiolMol Biol R 62:504–544Google Scholar
  43. 43.
    Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621. doi: 10.1111/j.1462-2920.2007.01377.x CrossRefPubMedGoogle Scholar
  44. 44.
    Boujelben I, Gomariz M, Martinez-Garcia M, Santos F, Pena A, Lopez C, Anton J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Ant Van Leeuwenhoek 101:845–857. doi: 10.1007/s10482-012-9701-7 CrossRefGoogle Scholar
  45. 45.
    Oren A (2009) Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 56:193–204. doi: 10.3354/ame01297 CrossRefGoogle Scholar
  46. 46.
    Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227CrossRefGoogle Scholar
  47. 47.
    Purdy K, Cresswell‐Maynard T, Nedwell D, McGenity T, Grant W, Timmis K, Embley T (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595CrossRefPubMedGoogle Scholar
  48. 48.
    Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24. doi: 10.1099/ijs.0.64464-0 CrossRefPubMedGoogle Scholar
  49. 49.
    Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860. doi: 10.1099/ijs.0.65398-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V, Ferdelman T, Finster K, Christensen FM, de Rezende JR (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325:1541–1544. doi: 10.1126/science.1174012 CrossRefPubMedGoogle Scholar
  51. 51.
    Pommier T, Neal PR, Gasol JM, Coll M, Acinas SG, Pedrós-Alió C (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microbial Ecol 61:221–233. doi: 10.3354/ame01484 CrossRefGoogle Scholar
  52. 52.
    Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768. doi: 10.1128/AEM.02409-09 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. doi: 10.1038/ismej.2011.41 PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Øvreås L, Daae FL, Torsvik V, Rodriguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301. doi: 10.1007/s00248-003-3006-3 CrossRefPubMedGoogle Scholar
  55. 55.
    Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. doi: 10.1038/nrmicro2504 CrossRefPubMedGoogle Scholar
  56. 56.
    Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466CrossRefGoogle Scholar
  57. 57.
    Mwatha WE, Grant WD (1993) Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404CrossRefGoogle Scholar
  58. 58.
    Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857CrossRefPubMedGoogle Scholar
  59. 59.
    Feng J, Zhou PJ, Liu SJ (2004) Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 54:1789–1791. doi: 10.1099/ijs.0.63209-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Hu L, Pan H, Xue Y, Ventosa A, Cowan DA, Jones BE, Grant WD, Ma Y (2008) Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58:1705–1708. doi: 10.1099/ijs.0.65700-0 CrossRefPubMedGoogle Scholar
  61. 61.
    Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760. doi: 10.1128/AEM.00040-09 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Feng J, Zhou P, Zhou YG, Liu SJ, Warren-Rhodes K (2005) Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152. doi: 10.1099/ijs.0.63320-0 CrossRefPubMedGoogle Scholar
  63. 63.
    Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666. doi: 10.1111/j.1462-2920.2005.00864.x CrossRefPubMedGoogle Scholar
  64. 64.
    Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190CrossRefPubMedGoogle Scholar
  65. 65.
    Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220. doi: 10.1099/ijs.0.65316-0 CrossRefPubMedGoogle Scholar
  66. 66.
    Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Ekman JV, Raulio M, Busse HJ, Fewer DP, Salkinoja-Salonen M (2011) Deinobacterium chartae gen. nov., sp. nov., an extremely radiation-resistant, biofilm-forming bacterium isolated from a Finnish paper mill. Int J Syst Evol Microbiol 61:540–548. doi: 10.1099/ijs.0.017970-0 CrossRefPubMedGoogle Scholar
  68. 68.
    Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496. doi: 10.1016/j.tim.2006.09.001 CrossRefPubMedGoogle Scholar
  69. 69.
    Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381:191–201CrossRefGoogle Scholar
  70. 70.
    Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, the NetherlandsCrossRefGoogle Scholar
  71. 71.
    Wu XY, Shi KL, Xu XW, Wu M, Oren A, Zhu XF (2010) Alkaliphilus halophilus sp. nov., a strictly anaerobic and halophilic bacterium isolated from a saline lake, and emended description of the genus Alkaliphilus. Int J Syst Evol Microbiol 60:2898–2902. doi: 10.1099/ijs.0.014084-0 CrossRefPubMedGoogle Scholar
  72. 72.
    Sorokin DY, Kuenen JG (2005) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702. doi: 10.1016/j.femsre.2004.10.005 CrossRefPubMedGoogle Scholar
  73. 73.
    Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Oremland RS (1990) Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. ApplEnviron Microbiol 56:614–622Google Scholar
  75. 75.
    Herbst DB (1998) Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. Int JSalt Lake Res 7:261–274Google Scholar
  76. 76.
    Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES, Sorokin DY (2008) Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464. doi: 10.1099/ijs.0.65655-0 CrossRefPubMedGoogle Scholar
  77. 77.
    Sorokin I, Zadorina E, Kravchenko I, Boulygina E, Tourova T, Sorokin D (2008) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827CrossRefPubMedGoogle Scholar
  78. 78.
    Sorokin ID, Kravchenko IK, Doroshenko EV, Boulygina ES, Zadorina EV, Tourova TP, Sorokin DY (2008) Haloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microbiol Ecol 65:425–433CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Addis Simachew
    • 1
  • Anders Lanzén
    • 2
  • Amare Gessesse
    • 1
  • Lise Øvreås
    • 3
  1. 1.Addis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of Ecology and Natural Resources, NEIKER-TecnaliaDerioSpain
  3. 3.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations