Microbial Ecology

, Volume 72, Issue 4, pp 831–839 | Cite as

Characterization Through Multilocus Sequence Analysis of Borrelia turdi Isolates from Portugal

  • Ana Cláudia Norte
  • Pedro Miguel Araújo
  • Luís Pascoal da Silva
  • Paulo Quadros Tenreiro
  • Jaime A. Ramos
  • Maria Sofia Núncio
  • Líbia Zé-Zé
  • Isabel Lopes de Carvalho
Environmental Microbiology


Borrelia turdi is a spirochete from the Borrelia burgdorferi complex, first reported in Japan, that has been increasingly detected in Europe. This genospecies is mostly associated with avian hosts and their ornithophilic ticks such as Ixodes frontalis. In this study, we isolated B. turdi from five I. frontalis feeding on Turdus merula, Turdus philomelos, Parus major and Troglodytes troglodytes, and one Ixodes ricinus feeding on a T. merula in Portugal. These isolates were genetically characterised according to their 5S-23S rRNA intergenic spacer, 16S rRNA and through typing of seven housekeeping genes (multilocus sequence typing). Multilocus sequence analyses revealed that the strains isolated in our study, although belonging to B. turdi genospecies, are not identical to the B. turdi reference strain Ya501. Instead, our strains are separated into a clear defined group, suggesting that the European samples diverged genetically from the strain originally detected in Japan. Population analysis of 5S-23S rRNA sequences can further resolve subpopulations within B. turdi, but more samples from a large geographical scale and host range would be needed to assess potential phylogeographical patterns within this genospecies.


Borrelia turdi Multilocus sequence typing Isolate Portugal Ixodes frontalis Phylogenetic analysis 



We would like to thank Instituto da Conservação da Natureza e Florestas, IP for logistical support, Isabel Abrantes for laboratory facilities, Pedro Lopes for help with fieldwork, Ligia Chaínho for help with laboratory work. Gabriele Margos gave valuable input regarding MLST and analysis and Dieter Heylen, Hein Sprong, Ana Palomar and José Oteo provided information on B. turdi sequences from their studies.

Ana C. Norte was financially supported by a post-doctoral fellowship from the Portuguese Foundation for Science and Technology (SFRH/BPD/62898/2009), and the study was partially funded by a centre grant (to BioISI, Centre Reference: UID/MULTI/04046/2013) from FCT/MCTES/PIDDAC, Portugal.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. All applicable international, national and institutional guidelines for the care and use of animals were followed.


  1. 1.
    Margos G, Piesman J, Lane RS, Ogden NH, Sing A, Straubinger RK, Fingerle V (2014) Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. Int J Syst Evol Microbiol 64:128–130CrossRefPubMedGoogle Scholar
  2. 2.
    Margos G, Vollmer SA, Ogden NH, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11:1545–1563CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu W-G, Dunn JJ, Luft BJ, Schutzer SE (2011) Whole Genome Sequence of an Unusual Borrelia burgdorferi Sensu Lato Isolate. J Bacteriol 193:1489–1490CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang G, Liveris D, Mukherjee P, Jungnick S, Margos G, Schwartz I (2014) Molecular Typing of Borrelia burgdorferi. In: Curr Protoc Microbiol. John Wiley & Sons Inc, Hoboken, pp 12C.5.1–12C.5.31CrossRefGoogle Scholar
  5. 5.
    Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex—clinical significance of genomic species? Clin Microbiol Infect 17:487–493CrossRefPubMedGoogle Scholar
  6. 6.
    Fukunaga M, Hamase A, Okada K, Inoue H, Tsuruta Y, Miyamoto K, Nakao M (1996) Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Appl Environ Microbiol 62:2338–2344PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fukunaga M, Hamase A, Okada K, Nakao M (1996) Borrelia tanukii sp. nov. and Borrelia turdae sp. nov. found from ixodid ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. Microbiol Immunol 40:877–881CrossRefPubMedGoogle Scholar
  8. 8.
    Kang JG, Kim HC, Choi CY, Nam HY, Chae HY, Chong ST, Klein TA, Ko S, Chae JS (2013) Molecular detection of Anaplasma, Bartonella, and Borrelia species in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector Borne Zoon Dis 13:215–225CrossRefGoogle Scholar
  9. 9.
    Hasle G, Bjune GA, Midthjell L, Røed KH, Leinaas HP (2011) Transport of Ixodes ricinus infected with Borrelia species to Norway by northward-migrating passerine birds. Ticks Tick-borne Dis 2:37–43CrossRefPubMedGoogle Scholar
  10. 10.
    Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H (2013) Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 15:663–673CrossRefPubMedGoogle Scholar
  11. 11.
    Palomar AM, Santibáñez P, Mazuelas D, Roncero L, Santibáñez S, Portillo A, Oteo JA (2012) Role of birds in dispersal of etiologic agents of tick-borne zoonoses, Spain, 2009. Emerg Infect Dis 18:1188–1191CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Norte AC, Ramos JA, Gern L, Núncio MS, Lopes de Carvalho I (2013) Birds as reservoirs for Borrelia burgdorferi s.l. in western Europe: circulation of B. turdi and other genospecies in bird-tick cycles in Portugal. Environ Microbiol 15:386–397CrossRefPubMedGoogle Scholar
  13. 13.
    Norte AC, Silva L, Tenreiro PJQ, Felgueiras MS, Araújo PM, Lopes PB, Matos C, Rosa A, Ferreira PJSG, Encarnação P, Rocha A, Escudero R, Anda P, Núncio MS, Carvalho I (2015) Patterns of tick infestation and their Borrelia burgdorferi s.l. infection in wild birds in Portugal. Ticks Tick-borne Dis. doi: 10.1016/j.ttbdis.2015.06.010, in press Google Scholar
  14. 14.
    Norte AC, Lopes de Carvalho I, Núncio MS, Ramos JA, Gern L (2013) Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: evidence from a xenodiagnostic experiment. Environ Microbiol Rep 5:604–607CrossRefPubMedGoogle Scholar
  15. 15.
    Margos G, Gatewood AG, Aanensen DM, Hanincová K, Terekhova D, Vollmer SA, Cornet M, Piesman J, Donaghy M, Bormane A, Hurn MA, Feil EJ, Fish D, Casjens S, Wormser GP, Schwartz I, Kurtenbach K (2008) MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105:8730–8735CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pérez-Eid C (2007) Les tiques: identification, biologie, importance médicale et veterinaire. Monographies de microbiologie, Editions TEC&DOC, Editions Medicales Internationales. Lavoisier.Google Scholar
  17. 17.
    Estrada-Peña A, Bouattour A, Camicas J-L, Walker AR (2004) Ticks of domestic animals in the Mediterranean Region - A guide to identification of species. University of Zaragoza, ZaragozaGoogle Scholar
  18. 18.
    Johnson BJ, Happ CM, Mayer LW, Piesman J (1992) Detection of Borrelia burgdorferi in ticks by species-specific amplification gene. Am J Trop Med Hyg 47:730–741PubMedGoogle Scholar
  19. 19.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  20. 20.
    Rijpkema AGT, Molkenboer MJCH, Schouls LM, Jongejan F, Schellekens JFP (1995) Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 33:3091–3095PubMedPubMedCentralGoogle Scholar
  21. 21.
    Park HS, Lee JH, Jeong EJ, Koh SE, Park TK, Jang WJ, Park KH, Kim BJ, Kook YH, Lee SH (2004) Evaluation of groEL gene analysis for identification of Borrelia burgdorferi sensu lato. J Clin Microbiol 42:1270–1273CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Postic D, Garnier M, Baranton G (2007) Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates – Description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int J Med Microbiol 297:263–271CrossRefPubMedGoogle Scholar
  24. 24.
    Bellet-Edimo R, Betschart B, Gern L (2005) Frequency and efficiency of transovarial and subsequent transtadial transmission of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks. Bull Soc Neuchl Sci Nat 128:117–125Google Scholar
  25. 25.
    Rudenko N, Golovchenko M, Belfiore N, Grubhoffer L, Oliver J Jr (2014) Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird. Parasit Vectors 7:4CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Coipan EC, Fonville M, Tijsse-Klasen E, van der Giessen JW, Takken W, Sprong H, Takumi K (2013) Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S-23S rDNA spacer region. Infect Genet Evol 17:216–222CrossRefPubMedGoogle Scholar
  27. 27.
    Vitorino LR, Margos G, Feil EJ, Collares-Pereira M, Zé-Zé L, Kurtenbach K (2008) Fine-scale phylogeographic structure of Borrelia lusitaniae revealed by multilocus sequence typing. PLoS One 3, e4002CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson ADM, Aanensen DM, James MC, Donaghy M, Randolph SE, Feil EJ, Kurtenbach K, Margos G (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol 13:184–192CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ana Cláudia Norte
    • 1
    • 2
  • Pedro Miguel Araújo
    • 1
  • Luís Pascoal da Silva
    • 1
    • 3
  • Paulo Quadros Tenreiro
    • 4
  • Jaime A. Ramos
    • 1
  • Maria Sofia Núncio
    • 2
  • Líbia Zé-Zé
    • 2
    • 5
  • Isabel Lopes de Carvalho
    • 2
    • 6
  1. 1.MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  2. 2.Centre for Vector and Infectious Diseases ResearchNational Institute of Health, Doutor Ricardo JorgeÁguas de MouraPortugal
  3. 3.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.DCNFC-DGOVInstituto da Conservação da Natureza e das Florestas, IPCoimbraPortugal
  5. 5.Faculty of Sciences, BioISI–Biosystems & Integrative Sciences InstituteUniversity of LisbonCampo GrandePortugal
  6. 6.Emergence Response and Biopreparedness UnitNational Institute of Health Doutor Ricardo JorgeLisbonPortugal

Personalised recommendations