Advertisement

Microbial Ecology

, Volume 71, Issue 3, pp 604–615 | Cite as

The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem

  • Qichao Tu
  • Xishu Zhou
  • Zhili He
  • Kai Xue
  • Liyou Wu
  • Peter Reich
  • Sarah Hobbie
  • Jizhong Zhou
Environmental Microbiology

Abstract

Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.

Keywords

nifH Soil diazotrophs Community structure Co-occurrence patterns Elevated CO2 

Notes

Acknowledgments

We thank James W. Voordeckers for editing this paper. This work is supported by the U.S. Department of Agriculture (project 2007-35319-18305) through the NSF-USDA Microbial Observatories Program, by the Department of Energy under contract DE-SC0004601 through Genomics: GTL Foundational Science, Office of Biological and Environmental Research, and by the National Science Foundation under grants DEB-0716587 and DEB-0620652 as well as grants DEB-0322057, DEB-0080382 (the Cedar Creek Long Term Ecological Research project), DEB-0218039, DEB-0219104, DEB-0217631, and DEB-0716587 (BioComplexity, LTER and LTREB projects), the DOE Program for Ecosystem Research, and the Minnesota Environment and Natural Resources Trust Fund.

Conflict of Interest

None

Supplementary material

248_2015_659_MOESM1_ESM.docx (86 kb)
Fig. S1 Ordination analysis of the nifH community structure using unweighted PCoA (A) and NMDS analysis based on Bray-Curtis distance matrix (B). A trend of separation could be found in both analyses. (DOCX 86 kb)
248_2015_659_MOESM2_ESM.docx (318 kb)
Fig. S2 Response ratio analysis of significantly changed nifH OTUs. Relative abundance and genus assignment for these OTUs were also included. Error bars plotted at the right side of the dashed line indicate significantly increased relative abundance at eCO2, while error bars plotted at the left side indicate significantly decreased relative abundance at aCO2. (DOCX 317 kb)
248_2015_659_MOESM3_ESM.docx (227 kb)
Fig. S3 All nifH-centered modules identified in this study. Only modules with >5 nodes were included. Diamond nodes represent nifH OTUs. Circular nodes represent 16S OTUs. (DOCX 226 kb)

References

  1. 1.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  2. 2.
    Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefPubMedGoogle Scholar
  3. 3.
    Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554. doi: 10.1093/molbev/msh047 CrossRefPubMedGoogle Scholar
  4. 4.
    Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014: bau001.Google Scholar
  5. 5.
    Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM, Zehr JP (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2‐fixing microorganisms in marine microbial mats. Environ Microbiol 8:1721–1735CrossRefPubMedGoogle Scholar
  6. 6.
    Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173CrossRefPubMedGoogle Scholar
  7. 7.
    Berthrong S, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80(10):3103–3112CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Collavino MM, Tripp HJ, Frank IE, Vidoz ML, Calderoli PA, Donato M, Zehr JP, Aguilar OM (2014) nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2-fixing community dynamics. Environ Microbiol 16(10):3211–3223CrossRefPubMedGoogle Scholar
  9. 9.
    Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921. doi: 10.1111/j.1462-2920.2008.01704.x CrossRefPubMedGoogle Scholar
  10. 10.
    Großkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MM, Lavik G, Schmitz RA, Wallace DW, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364CrossRefPubMedGoogle Scholar
  11. 11.
    Hsu S-F, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Q, Quensen JF, Fish JA, Kwon Lee T, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH Genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4. doi: 10.1128/mBio.00592-13 Google Scholar
  13. 13.
    Izquierdo J, Nüsslein K (2006) Distribution of extensive nifH gene diversity across physical soil microenvironments. Microb Ecol 51:441–452CrossRefPubMedGoogle Scholar
  14. 14.
    Groszkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MMM, Lavik G, Schmitz RA, Wallace DWR, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364CrossRefGoogle Scholar
  15. 15.
    Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645CrossRefGoogle Scholar
  16. 16.
    Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799CrossRefPubMedGoogle Scholar
  17. 17.
    Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191CrossRefPubMedGoogle Scholar
  18. 18.
    Luo Y, Su BO, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Murtrie REM, Oren RAM, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739CrossRefGoogle Scholar
  19. 19.
    Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JM, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925CrossRefPubMedGoogle Scholar
  20. 20.
    Finzi AC, Moore DJ, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25CrossRefPubMedGoogle Scholar
  21. 21.
    He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13:564–575CrossRefPubMedGoogle Scholar
  22. 22.
    Xu M, He Z, Deng Y, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2013) Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiol 13:124CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. mBio 2. doi: 10.1128/mBio.00122-11 Google Scholar
  26. 26.
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X (2010) Functional molecular ecological networks. mBio 1. doi: 10.1128/mBio.00169-10 Google Scholar
  28. 28.
    Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810CrossRefPubMedGoogle Scholar
  29. 29.
    Lewin KF, Hendrey GR, Nagy J, LaMorte RL (1994) Design and application of a free-air carbon dioxide enrichment facility. Agric For Meteorol 70:15–29CrossRefGoogle Scholar
  30. 30.
    Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ahn SJ, Costa J, Rettig Emanuel J (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre-or psost-PCR. Nucleic Acids Res 24:2623–2625CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103CrossRefPubMedGoogle Scholar
  33. 33.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat MethodsGoogle Scholar
  34. 34.
    Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156CrossRefGoogle Scholar
  39. 39.
    Hamady M, Lozupone C, Knight R (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ, Bork P (2010) eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res 38:9CrossRefGoogle Scholar
  42. 42.
    Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinforma 13:113CrossRefGoogle Scholar
  43. 43.
    Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J (2011) The thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genet 7:e1002318CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lin L, Ji Y, Tu Q, Huang R, Teng L, Zeng X, Song H, Wang K, Zhou Q, Li Y (2013) Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter. Biotechnol Biofuels 6:103CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, Zhou J (2007) Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinforma 8:299CrossRefGoogle Scholar
  46. 46.
    Zhou A, He Z, Redding‐Johanson AM, Mukhopadhyay A, Hemme CL, Joachimiak MP, Luo F, Deng Y, Bender KS, He Q (2010) Hydrogen peroxide‐induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 12:2645–2657PubMedGoogle Scholar
  47. 47.
    Yang Y, Harris DP, Luo F, Wu L, Parsons AB, Palumbo AV, Zhou J (2008) Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genomics 9:S11CrossRefGoogle Scholar
  48. 48.
    Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat Clim Chang 3:278–282CrossRefGoogle Scholar
  50. 50.
    Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99CrossRefPubMedGoogle Scholar
  51. 51.
    Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226CrossRefPubMedGoogle Scholar
  52. 52.
    Drake JE, Gallet‐Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357CrossRefPubMedGoogle Scholar
  53. 53.
    Law CS, Breitbarth E, Hoffmann LJ, McGraw CM, Langlois RJ, LaRoche J, Marriner A, Safi KA (2012) No stimulation of nitrogen fixation by non-filamentous diazotrophs under elevated CO2 in the South Pacific. Glob Chang Biol 18:3004–3014CrossRefGoogle Scholar
  54. 54.
    Koike T, Izuta T, Lei T, Kitao M, Asanuma SI (1997) Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment. Springer, Netherlands, pp 887–888CrossRefGoogle Scholar
  55. 55.
    Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7(7):e42149–e42149CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mutch LA, Young JP (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444CrossRefPubMedGoogle Scholar
  57. 57.
    Stacey G (1995) Bradyrhizobium japonicum nodulation genetics. FEMS Microbiol Lett 127:1–9CrossRefPubMedGoogle Scholar
  58. 58.
    Parker MA (2012) Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21:1769–1778CrossRefPubMedGoogle Scholar
  59. 59.
    Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefPubMedGoogle Scholar
  60. 60.
    Stanish LF, O’Neill SP, Gonzalez A, Legg TM, Knelman J, McKnight DM, Spaulding S, Nemergut DR (2013) Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. Environ Microbiol 15:1115–1131CrossRefPubMedGoogle Scholar
  61. 61.
    Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Müller T, Walter B, Wirtz A, Burkovski A (2006) Ammonium toxicity in bacteria. Curr Microbiol 52:400–406CrossRefPubMedGoogle Scholar
  63. 63.
    Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  64. 64.
    Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  65. 65.
    Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51CrossRefGoogle Scholar
  66. 66.
    Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass miscanthus. Int J Syst Evol Microbiol 51:17–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qichao Tu
    • 1
    • 2
  • Xishu Zhou
    • 2
    • 3
  • Zhili He
    • 3
  • Kai Xue
    • 3
  • Liyou Wu
    • 3
  • Peter Reich
    • 4
    • 5
  • Sarah Hobbie
    • 4
  • Jizhong Zhou
    • 2
    • 6
    • 7
  1. 1.Department of Marine Sciences, Ocean CollegeZhejiang UniversityHangzhouChina
  2. 2.Institute for Environmental Genomics and Department of Microbiology and Plant BiologyThe University of OklahomaNormanUSA
  3. 3.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  4. 4.Department of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  5. 5.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyRichmondAustralia
  6. 6.Earth Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.State Key Joint Laboratory of Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations