Advertisement

Microbial Ecology

, Volume 72, Issue 4, pp 813–820 | Cite as

Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain

  • Carmen Lozano
  • David Gonzalez-Barrio
  • Maria Cruz Camacho
  • Jose Francisco Lima-Barbero
  • Javier de la Puente
  • Ursula Höfle
  • Carmen TorresEmail author
Environmental Microbiology

Abstract

The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobial resistance. A total of 348 cloacal/rectal samples from red-legged partridges (127), white storks (81), red kites (59), and wild boars (81) (June 2014/February 2015) were inoculated in Slanetz-Bartley agar supplemented with vancomycin (4 μg/mL). We investigated the susceptibility to 12 antimicrobials and the presence of 19 antimicrobial resistance and five virulence genes. In addition, we performed multilocus sequence typing, detection of IS16 and studied Tn1546 structure. One VRE-a isolate was identified in one wild boar. This isolate was identified as Enterococcus faecium, harbored vanA gene included into Tn1546 (truncated with IS1542/IS1216), and belonged to the new ST993. This isolate contained the erm(A), erm(B), tet(M), dfrG, and dfrK genes. Neither element IS16 nor the studied virulence genes were detected. Ninety-six VRE-i isolates were identified (89 Enterococcus gallinarum and seven Enterococcus casseliflavus), with the following prevalence: red kites (71.2 %), white storks (46.9 %), red-legged partridges (7.9 %), and wild boars (4.9 %). Most E. gallinarum isolates showed resistance to tetracycline (66.3 %) and/or erythromycin (46.1 %). High-level resistance to aminoglycosides was present among our VRE-i isolates: kanamycin (22.9 %), streptomycin (11.5 %), and gentamicin (9.4 %). In general, VRE-i isolates of red kites showed higher rates of resistance for non-glycopeptide agents than those of other animal species. The dissemination of acquired resistance mechanisms in natural environments could have implications in the global spread of resistance with public health implications.

Keywords

vanA E. faecium ST993 vanC Birds Wild boar 

Notes

Acknowledgments

This work was supported by Project SAF2012-35474 from the Ministerio de Economía y Competitividad (MINECO) of Spain and the Fondo Europeo de Desarrollo Regional (FEDER), the project POIC-2014-001-P of the regional government of Castilla–La Mancha, and by the project RTA2011-00111-C03-02 from the National Institute for Research in Agricultural and Alimentary Technology (INIA), by CDTI (Centro para el Desarrollo Tecnológico Industrial, MINECO). Carmen Lozano has a contract associated with Project SAF2012-35474. Red kite trapping activities were developed by staff and volunteers of SEO-Monticola and Fondo de Amigos del Buitre within the framework of the red kite monitoring project at the Binaced Supplementary Feeding Point with the kind authorization of the Government of the Autonomous Regions of Aragón. We are especially indebted to Manuel Aguilera for help with trapping red kites in Huesca, and we acknowledge collaboration from Dr. Francisco Ruiz-Fons from IREC.

Reference

  1. 1.
    de Perio MA, Yarnold PR, Warren J, Noskin GA (2006) Risk factors and outcomes associated with non-Enterococcus faecalis, non-Enterococcus faecium enterococcal bacteremia. Infect Control Hosp Epidemiol 27:28–33CrossRefPubMedGoogle Scholar
  2. 2.
    Arias CA, Contreras GA, Murray BE (2010) Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562CrossRefPubMedGoogle Scholar
  3. 3.
    López M, Rezusta A, Seral C, Aspiroz C, Marne C, Aldea MJ, Ferrer I, Revillo MJ, Castillo FJ, Torres C (2012) Detection and characterization of a ST6 clone of vanB2-Enterococcus faecalis from three different hospitals in Spain. Eur J Clin Microbiol Infect Dis 31:257–260CrossRefPubMedGoogle Scholar
  4. 4.
    Nebreda T, Oteo J, Aldea C, García-Estébanez C, Gastelu-Iturri J, Bautista V, García-Cobos S, Campos J (2007) Hospital dissemination of a clonal complex 17 vanB2-containing Enterococcus faecium. J Antimicrob Chemother 59:806–807CrossRefPubMedGoogle Scholar
  5. 5.
    Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:19046PubMedGoogle Scholar
  6. 6.
    Hammerum AM (2012) Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625CrossRefPubMedGoogle Scholar
  7. 7.
    López M, Sáenz Y, Rojo-Bezares B, Martínez S, del Campo R, Ruiz-Larrea F, Zarazaga M, Torres C (2009) Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. Int J Food Microbiol 133:172–178CrossRefPubMedGoogle Scholar
  8. 8.
    Torres C, Tenorio C, Portillo A, García M, Martínez C, del Campo R, Ruiz-Larrea F, Zarazaga M (2003) Intestinal colonization by vanA- or vanB2-containing enterococcal isolates of healthy animals in Spain. Microb Drug Resist 9:S47–52CrossRefPubMedGoogle Scholar
  9. 9.
    Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161CrossRefPubMedGoogle Scholar
  10. 10.
    Lauderdale TL, Shiau YR, Wang HY, Lai JF, Huang IW, Chen PC, Chen HY, Lai SS, Liu YF, Ho M (2007) Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ Microbiol 9:819–823CrossRefPubMedGoogle Scholar
  11. 11.
    Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554CrossRefPubMedGoogle Scholar
  12. 12.
    Heuer OE, Hammerum AM, Collignon P, Wegener HC (2006) Human health hazard from antimicrobial-resistant enterococci in animals and food. Clin Infect Dis 43:911–916CrossRefPubMedGoogle Scholar
  13. 13.
    Lozano C, González-Barrio D, García JT, Ceballos S, Olea PP, Ruiz-Fons F, Torres C (2015) Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet Microbiol 177:168–174CrossRefPubMedGoogle Scholar
  14. 14.
    Oravcova V, Ghosh A, Zurek L, Bardon J, Guenther S, Cizek A, Literak I (2013) Vancomycin-resistant enterococci in rooks (Corvus frugilegus) wintering throughout Europe. Environ Microbiol 15:548–556CrossRefPubMedGoogle Scholar
  15. 15.
    Silva N, Igrejas G, Figueiredo N, Gonçalves A, Radhouani H, Rodrigues J, Poeta P (2010) Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci Total Environ 408:4871–4876CrossRefPubMedGoogle Scholar
  16. 16.
    Silva N, Igrejas G, Rodrigues P, Rodrigues T, Gonçalves A, Felgar AC, Pacheco R, Gonçalves D, Cunha R, Poeta P (2011) Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathol 40:473–479CrossRefPubMedGoogle Scholar
  17. 17.
    Clinical and Laboratory Standards Institute, CLSI (2014) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. In: CLSI document M100-S24. Wayne, Clinical and Laboratory Standards InstituteGoogle Scholar
  18. 18.
    Domingo MC, Huletsky A, Giroux R, Boissinot K, Picard FJ, Lebel P, Ferraro MJ, Bergeron MG (2005) High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob Agents Chemother 49:4784–4786CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    López M, Sáenz Y, Alvarez-Martínez MJ, Marco F, Robredo B, Rojo-Bezares B, Ruiz-Larrea F, Zarazaga M, Torres C (2010) Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin. J Antimicrob Chemother 65:1570–1575CrossRefPubMedGoogle Scholar
  20. 20.
    Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ (2002) Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Poeta P, Costa D, Igrejas G, Rojo-Bezares B, Sáenz Y, Zarazaga M, Ruiz-Larrea F, Rodrigues J, Torres C (2007) Characterization of vanA-containing Enterococcus faecium isolates carrying Tn5397-like and Tn916/Tn1545-like transposons in wild boars (Sus Scrofa). Microb Drug Resist Fall 13:151–156CrossRefGoogle Scholar
  24. 24.
    Poeta P, Costa D, Igrejas G, Rodrigues J, Torres C (2007) Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet Microbiol 125:368–374CrossRefPubMedGoogle Scholar
  25. 25.
    Mallon DJ, Corkill JE, Hazel SM, Wilson JS, French NP, Bennett M, Hart CA (2002) Excretion of vancomycin-resistant enterococci by wild mammals. Emerg Infect Dis 8:636–638CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Klibi N, Ben Amor I, Rahmouni M, Dziri R, Douja G, Ben Said L, Lozano C, Boudabous A, Ben Slama K, Mansouri R, Torres C (2015) Diversity of species and antibiotic resistance among fecal enterococci from wild birds in Tunisia. Detection of vanA-containing Enterococcus faecium isolates. Eur J Wildl Res 61:319–323CrossRefGoogle Scholar
  27. 27.
    Oravcova V, Zurek L, Townsend A, Clark AB, Ellis JC, Cizek A, Literak I (2014) American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ Microbiol 16:939–949CrossRefPubMedGoogle Scholar
  28. 28.
    Silva N, Igrejas G, Felgar A, Gonçalves A, Pacheco R, Poeta P (2012) Molecular characterization of vanA-containing Enterococcus from migratory birds: song thrush (Turdus philomelos). Braz J Microbiol 43:1026–1029CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rana SW, Kumar A, Walia SK, Berven K, Cumper K, Walia SK (2011) Isolation of Tn1546-like elements in vancomycin-resistant Enterococcus faecium isolated from wood frogs: an emerging risk for zoonotic bacterial infections to humans. J Appl Microbiol 110:35–43CrossRefPubMedGoogle Scholar
  30. 30.
    Radhouani H, Igrejas G, Pinto L, Gonçalves A, Coelho C, Rodrigues J, Poeta P (2011) Molecular characterization of antibiotic resistance in enterococci recovered from seagulls (Larus cachinnans) representing an environmental health problem. J Environ Monit 13:2227–2233CrossRefPubMedGoogle Scholar
  31. 31.
    Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R, Igrejas G (2012) Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J Med Microbiol 61:837–843CrossRefPubMedGoogle Scholar
  32. 32.
    Aarestrup FM (2000) Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE min pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol 38:2774–2777PubMedPubMedCentralGoogle Scholar
  33. 33.
    Borgen K, Sørum M, Wasteson Y, Kruse H, Oppegaard H (2002) Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb Drug Resist Winter 8:363–368CrossRefGoogle Scholar
  34. 34.
    Top J, Willems R, van der Velden S, Asbroek M, Bonten M (2008) Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J Clin Microbiol 46:214–219CrossRefPubMedGoogle Scholar
  35. 35.
    Leavis HL, Bonten MJM, Willems RJL (2006) Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Current Op Microbiol 9:454–460CrossRefGoogle Scholar
  36. 36.
    Poeta P, Costa D, Sáenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C (2005) Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 52:396–402CrossRefPubMedGoogle Scholar
  37. 37.
    Coque TM, Tomayko JF, Ricke SC, Okhyusen PC, Murray BE (1996) Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob Agents Chemother 40:2605–2609PubMedPubMedCentralGoogle Scholar
  38. 38.
    Sellin M, Palmgren H, Broman T, Bergström S, Olsen B (2000) Involving ornithologists in the surveillance of vancomycin-resistant enterococci. Emerg Infect Dis 6:87–88PubMedPubMedCentralGoogle Scholar
  39. 39.
    World Organisation of Animal Health (OIE) (2014) OIE list of antimicrobial agents of veterinary importance., Available at: http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/OIE_list_antimicrobials.pdf
  40. 40.
    World Health Organization (2011) WHO list of critically important antimicrobials., Available at: http://apps.who.int/iris/bitstream/10665/77376/1/9789241504485_eng.pdf?ua=1
  41. 41.
    Cauwerts K, Decostere A, De Graef EM, Haesebrouck F, Pasmans F (2007) High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol 36:395–399CrossRefPubMedGoogle Scholar
  42. 42.
    De Leener E, Martel A, Decostere A, Haesebrouck F (2004) Distribution of the erm(B) gene, tetracycline resistance genes, and Tn1545-like transposons in macrolide- and lincosamide-resistant enterococci from pigs and humans. Microb Drug Resist 10:341–345CrossRefPubMedGoogle Scholar
  43. 43.
    del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int J Antimicrob Agents 15:221–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Área Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain
  2. 2.Grupo SaBio (Sanidad y Biotecnología) Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad RealSpain
  3. 3.Grupo Ornitológico SEO-Monticola, Unidad de ZoologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations