Advertisement

Microbial Ecology

, Volume 70, Issue 3, pp 634–645 | Cite as

Comparison of the Diversity of Basidiomycetes from Dead Wood of the Manchurian fir (Abies holophylla) as Evaluated by Fruiting Body Collection, Mycelial Isolation, and 454 Sequencing

  • Yeongseon Jang
  • Seokyoon Jang
  • Mihee Min
  • Joo-Hyun Hong
  • Hanbyul Lee
  • Hwanhwi Lee
  • Young Woon Lim
  • Jae-Jin Kim
Fungal Microbiology

Abstract

In this study, three different methods (fruiting body collection, mycelial isolation, and 454 sequencing) were implemented to determine the diversity of wood-inhabiting basidiomycetes from dead Manchurian fir (Abies holophylla). The three methods recovered similar species richness (26 species from fruiting bodies, 32 species from mycelia, and 32 species from 454 sequencing), but Fisher’s alpha, Shannon-Wiener, Simpson’s diversity indices of fungal communities indicated fruiting body collection and mycelial isolation displayed higher diversity compared with 454 sequencing. In total, 75 wood-inhabiting basidiomycetes were detected. The most frequently observed species were Heterobasidion orientale (fruiting body collection), Bjerkandera adusta (mycelial isolation), and Trichaptum fusco-violaceum (454 sequencing). Only two species, Hymenochaete yasudae and Hypochnicium karstenii, were detected by all three methods. This result indicated that Manchurian fir harbors a diverse basidiomycetous fungal community and for complete estimation of fungal diversity, multiple methods should be used. Further studies are required to understand their ecology in the context of forest ecosystems.

Keywords

Dead wood Mycoparasitic fungi Mycorrhizal fungi Wood-decay fungi 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10011390), and by a Korea University Grant. We thank Dr. Jonathan J. Fong for helpful suggestions on the manuscript.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest and this article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Allmér J, Vasiliauskas R, Ihrmark K, Stenlid J, Dahlberg A (2005) Wood‐inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T‐RFLP identification. FEMS Microbiol Ecol 55:57–67CrossRefGoogle Scholar
  2. 2.
    Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409CrossRefPubMedGoogle Scholar
  3. 3.
    Bader P, Jansson S, Jonsson BG (1995) Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol Conserv 72:355–362CrossRefGoogle Scholar
  4. 4.
    Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224CrossRefPubMedGoogle Scholar
  5. 5.
    Boddy L (2001) Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecol Bull 49:43–56Google Scholar
  6. 6.
    Bollen GJ, Fuchs A (1970) On the specificity of the in vitro and in vivo antifungal activity of benomyl. Neth J Plant Pathol 76:299–312CrossRefGoogle Scholar
  7. 7.
    Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456CrossRefPubMedGoogle Scholar
  8. 8.
    Chen C-J, Oberwinkler F, Chen Z-C (1999) Tremella occultifuroidea sp. nov., a new mycoparasite of Dacrymyces. Mycoscience 40:137–143CrossRefGoogle Scholar
  9. 9.
    Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217CrossRefPubMedGoogle Scholar
  10. 10.
    Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ (2012) Patterns of macromycete community assemblage along an elevation gradient: options for fungal gradient and metacommunity analyses. Biodivers Conserv 21:2247–2268CrossRefGoogle Scholar
  11. 11.
    Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21:205–219CrossRefGoogle Scholar
  12. 12.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  13. 13.
    Heilmann-Clausen J (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol Res 105:575–596CrossRefGoogle Scholar
  14. 14.
    Heilmann-Clausen J, Christensen M (2004) Does size matter?: on the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag 201:105–117CrossRefGoogle Scholar
  15. 15.
    Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartová A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454 sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677CrossRefPubMedGoogle Scholar
  16. 16.
    Jang Y, Lee SW, Lim YW, Lee JS, Hattori T, Kim J-J (2013) The genus Wrightoporia in Korea. Mycotaxon 123:335–341CrossRefGoogle Scholar
  17. 17.
    Johannesson H, Stenlid J (1999) Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden. For Ecol Manag 115:203–211CrossRefGoogle Scholar
  18. 18.
    Jung HS (1994) Floral studies on Korean wood-rotting fungi (II): on the flora of the Aphyllophorales (Basidiomycotina). Korean J Mycol 22:62–99Google Scholar
  19. 19.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Katsuki T, Zhang D, Rushforth K (2013) Abies holophylla. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 22 January 2015
  21. 21.
    Kebli H, Drouin P, Brais S, Kernaghan G (2011) Species composition of saproxylic fungal communities on decaying logs in the boreal forest. Microb Ecol 61:898–910CrossRefPubMedGoogle Scholar
  22. 22.
    Kim G-H, Lim YW, Choi Y-S, Kim M-J, Kim J-J (2009) Primary and secondary decay fungi on exposed pine tree logs in the forest. Holzforschung 63:633–638Google Scholar
  23. 23.
    Kim G-H, Lim YW, Song Y-S, Kim J-J (2005) Decay fungi from playground wood products in service using 28S rDNA sequence analysis. Holzforschung 59:459–466CrossRefGoogle Scholar
  24. 24.
    Kim J-J, Kang S-M, Choi Y-S, Kim G-H (2007) Microfungi potentially disfiguring CCA-treated wood. Int Biodeterior Biodegrad 60:197–201CrossRefGoogle Scholar
  25. 25.
    Kim M-J, Lee H, Choi Y-S, Kim G-H, Huh N-Y, Lee S, Lim YW, Lee S-S, Kim J-J (2010) Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Anton Leeuw 97:377–387CrossRefGoogle Scholar
  26. 26.
    Kubartová A, Ottosson E, Dahlberg A, Stenlid J (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21:4514–4532CrossRefPubMedGoogle Scholar
  27. 27.
    Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152CrossRefPubMedGoogle Scholar
  28. 28.
    Lee D-H (2013) Above- and below-ground biomass of Abies holophylla under different stand conditions. Life Sci J 10:751–758Google Scholar
  29. 29.
    Lee JS, Kim C, Park JY, Ryoo KH, Kim KM, Yoon YG, Jung HS (2004) Unrecorded higher fungi of the Songnisan National Park. Mycobiology 32:68–73CrossRefGoogle Scholar
  30. 30.
    Lee JS, Woo EJ, Oh KH, Kim J-J, Lim YW (2010) The first report of two species of Polyporus (Polyporaceae, Basidiomycota) from South Korea. Korean J Mycol 48:748–753Google Scholar
  31. 31.
    Li W, Fu L, Niu B, Wu S, Wooley J (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high‐throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lindblad I (1998) Wood‐inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord J Bot 18:243–255CrossRefGoogle Scholar
  34. 34.
    Lindner DL, Burdsall HH Jr, Stanosz GR (2006) Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories. Mycologia 98:195–217CrossRefPubMedGoogle Scholar
  35. 35.
    Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22CrossRefGoogle Scholar
  36. 36.
    Maddison D, Maddison W (2005) MacClade 4: analysis of phylogeny and character evolution. Version 4.08. Sinauer Associates, SunderlandGoogle Scholar
  37. 37.
    Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia 103:1184–1193CrossRefPubMedGoogle Scholar
  38. 38.
    Niini SS, Raudaskoski M (1993) Response of ectomycorrhizal fungi to benomyl and nocodazole: growth inhibition and microtubule depolymerization. Mycorrhiza 3:83–91CrossRefGoogle Scholar
  39. 39.
    Nilsson RH, Larsson K-H, Larsson E, Kõljalg U (2006) Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432CrossRefPubMedGoogle Scholar
  40. 40.
    Nordén B, Ryberg M, Götmark F, Olausson B (2004) Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv 117:1–10CrossRefGoogle Scholar
  41. 41.
    Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Center, Uppsala University, UppsalaGoogle Scholar
  42. 42.
    Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson K-H, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing—what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283CrossRefGoogle Scholar
  43. 43.
    Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME 7:1696–1709CrossRefGoogle Scholar
  44. 44.
    Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv 117:271–283CrossRefGoogle Scholar
  45. 45.
    Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Report 24:45–55CrossRefGoogle Scholar
  46. 46.
    Rajala T, Paltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505CrossRefPubMedGoogle Scholar
  47. 47.
    Rao S, Hyde KD, Pointing SB (2013) Comparison of DNA and RNA, and cultivation approaches for the recovery of terrestrial and aquatic fungi from environmental samples. Curr Microbiol 66:185–191PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936CrossRefGoogle Scholar
  51. 51.
    Vasiliauskas R, Stenlid J (1998) Fungi inhabiting stems of Picea abies in a managed stand in Lithuania. For Ecol Manag 109:119–126CrossRefGoogle Scholar
  52. 52.
    Wang CJK, Zabel RA (1990) Identification manual for fungi from utility poles in the eastern United States. Allen Press Inc., KansasGoogle Scholar
  53. 53.
    Worrall JJ (1991) Media for selective isolation of Hymenomycetes. Mycologia 83:296–302CrossRefGoogle Scholar
  54. 54.
    Zhou LW, Dai YC (2012) Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecol 5:230–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yeongseon Jang
    • 1
  • Seokyoon Jang
    • 2
  • Mihee Min
    • 2
  • Joo-Hyun Hong
    • 2
  • Hanbyul Lee
    • 2
  • Hwanhwi Lee
    • 2
  • Young Woon Lim
    • 1
  • Jae-Jin Kim
    • 2
  1. 1.School of Biological SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Division of Environmental Science and Ecological Engineering, College of Life Sciences and BiotechnologyKorea UniversitySeongbuk-guKorea

Personalised recommendations