Microbial Ecology

, Volume 70, Issue 2, pp 473–483 | Cite as

Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

  • Mylène Hugoni
  • Hélène Agogué
  • Najwa Taib
  • Isabelle Domaizon
  • Anne Moné
  • Pierre E. Galand
  • Gisèle Bronner
  • Didier Debroas
  • Isabelle MaryEmail author
Environmental Microbiology


To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December–March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April–August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters’ microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.


Ammonia oxidation amoA Archaea Gradient Diversity 



We thank P. Pineau, N. Lachaussée, M. Breret, F. Mornet, L. Beaugeard, J. Lavaud, and J. Jourde for the sampling. We thank A. Vellet, I. Louati, M. Breret, and C. Lavergne for their technical support during the experimentations and J.C. Auguet for providing us the map of the sampling location of the stations. This work was supported by a CNRS Program Ecosphère Continentale et Côtière (EC2CO, 2010–2012). The work of PE Galand was supported by the Agence Nationale de la Recherche (ANR) project MICADO (ANR-11JSV7-003-01).

Supplementary material

248_2015_601_Fig6_ESM.gif (24 kb)
Supplementary Figure 1

Box plot of Shannon index from the three different sampling stations. A significant difference in diversity between two stations is marked with a star (*, p < 0.008) (GIF 23 kb)

248_2015_601_Fig7_ESM.gif (28 kb)
Supplementary Figure 2

Ordination diagram from CCA of major active archaeal groups compared with environmental data (GIF 28 kb)

248_2015_601_MOESM1_ESM.tif (24.9 mb)
ESM 3 (TIFF 25480 kb)
248_2015_601_MOESM2_ESM.tif (24.9 mb)
ESM 4 (TIFF 25480 kb)
248_2015_601_MOESM3_ESM.xls (44 kb)
Supplementary Table 1 Quality checked (QC) and Archaea affiliated sequences obtained for each sample from surface water collected monthly in the Charente estuary. Environmental parameters (temperature, salinity, pH, and Chla, ammonia and phosphates concentrations) associated to each point are presented. ND: not determined (XLS 43 kb)
248_2015_601_MOESM4_ESM.xls (32 kb)
Supplementary Table 2 Mean number of 16S rRNA sequences associated with each abundant OTU retrieved in the freshwater, mesohaline, and marine stations. ND: not determined (XLS 32 kb)
248_2015_601_MOESM5_ESM.xls (37 kb)
Supplementary Table 3 Monthly community structure at the subcluster level in Thaumarchaeota MGI. Number of OTUs were presented for each subgroup and number of sequences between brackets. ND: not determined (XLS 37 kb)


  1. 1.
    DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Auguet JC, Casamayor EO (2008) A hotspot for cold Crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086PubMedCrossRefGoogle Scholar
  3. 3.
    Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K et al (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP et al (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995PubMedCrossRefGoogle Scholar
  5. 5.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  6. 6.
    Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  7. 7.
    Galand PE, Gutierrez-Provecho C, Massana R, Gasol J, Casamayor EO (2010) Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea. Limnol Oceanogr 55:2117–2125CrossRefGoogle Scholar
  8. 8.
    Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM et al (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175PubMedCrossRefGoogle Scholar
  9. 9.
    Hugoni M, Etien S, Bourges A, Lepere C, Domaizon I et al (2013) Dynamics of ammonia-oxidizing Archaea and Bacteria in contrasted freshwater ecosystems. Res Microbiol 164:360–370PubMedCrossRefGoogle Scholar
  10. 10.
    Vissers EW, Anselmetti FS, Bodelier PL, Muyzer G, Schleper C et al (2013) Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea 2013:289478PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441PubMedCrossRefGoogle Scholar
  12. 12.
    Magalhães C, Machado A, Bordalo A (2009) Temporal variability in the abundance of ammonia oxidizing Bacteria vs. Archaea in sandy sediments of the Douro River estuary, Portugal. Aquat Microb Ecol 56:13–23CrossRefGoogle Scholar
  13. 13.
    Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing Archaea and Bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016PubMedCrossRefGoogle Scholar
  14. 14.
    Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing Bacteria and Archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079PubMedCrossRefGoogle Scholar
  15. 15.
    Bernhard AE, Bollmann A (2010) Estuarine nitrifiers: new players, patterns and processes. Estuar Coast Shelf Sci 88:1–11CrossRefGoogle Scholar
  16. 16.
    Auguet JC, Triado-Margarit X, Nomokonova N, Camarero L, Casamayor EO (2012) Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J 6:1786–1797PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci U S A 111:12504–12509PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H et al (2012) Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci U S A 109:17989–17994PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N et al (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea. Proc Natl Acad Sci U S A 107:8818–8823PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Pedneault E, Galand PE, Potvin M, Tremblay JE, Lovejoy C (2014) Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean. Sci Rep 4:4661PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Beam JP, Jay ZJ, Kozubal MA, Inskeep WP (2014) Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J 8:938–951PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Konneke M, Schubert DM, Brown PC, Hugler M, Standfest S et al (2014) Ammonia-oxidizing Archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci U S A 111:8239–8244PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706CrossRefGoogle Scholar
  25. 25.
    Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Auguet JC, Barberan A, Casamayor EO (2009) Global ecological patterns in uncultured Archaea. ISME J 4:182–190PubMedCrossRefGoogle Scholar
  27. 27.
    Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439–1447PubMedCrossRefGoogle Scholar
  28. 28.
    Santoro AE, Casciotti K, Francis CA (2010) Activity, abundance and diversity of nitrifying Archaea and Bacteria in the central California Current. Environ Microbiol Rep 12:1989–2006CrossRefGoogle Scholar
  29. 29.
    Galand PE, Lovejoy C, Pouliot J (2008) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a Stamukhi lake and its source waters. Limnol Oceanogr 53:813–823CrossRefGoogle Scholar
  30. 30.
    Galand PE, Lovejoy C, Vincent WF (2006) Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat Microb Ecol 44:115–126CrossRefGoogle Scholar
  31. 31.
    Herfort L, Kim JH, Coolen MJL, Abbas B, Schouten S et al (2009) Diversity of Archaea and detection of crenarchaeotal amoA genes in the river Rhine and Têt. Aquat Microb Ecol 55:189–201CrossRefGoogle Scholar
  32. 32.
    Alonso-Saez L, Balague V, Sa EL, Sanchez O, Gonzalez JM et al (2007) Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60:98–112PubMedCrossRefGoogle Scholar
  33. 33.
    Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD et al (2006) Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol 42:119–126CrossRefGoogle Scholar
  34. 34.
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare Bacteria in a coastal ocean. Proc Natl Acad Sci U S A 108:12776–12781PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I et al (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110:6004–6009PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  37. 37.
    Strickland J, Parsons T (1968) A practical handbook of sea water analysisGoogle Scholar
  38. 38.
    Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712Google Scholar
  39. 39.
    Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87PubMedCrossRefGoogle Scholar
  41. 41.
    Taib N, Mangot JF, Domaizon I, Bronner G, Debroas D (2013) Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS ONE 8:e58950PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  47. 47.
    Massana R, DeLong EF, Pedros-Alio C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol 66:1777–1787PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Abell GC, Revill AT, Smith C, Bissett AP, Volkman JK et al (2010) Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J 4:286–300PubMedCrossRefGoogle Scholar
  49. 49.
    Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979PubMedCrossRefGoogle Scholar
  50. 50.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15:1647–1658PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Auguet JC, Casamayor EO (2013) Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes. FEMS Microbiol Ecol 84:154–164PubMedCrossRefGoogle Scholar
  53. 53.
    Restrepo-Ortiz CX, Auguet JC, Casamayor EO (2013) Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol 16:689–700PubMedCrossRefGoogle Scholar
  54. 54.
    Mußmann M, Brito I, Pitcher A, Sinninghe Damste JS, Hatzenpichler R et al (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A 108:16771–16776PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Pester M, Rattei T, Flechl S, Grongroft A, Richter A et al (2011) amoA-based consensus phylogeny of ammonia-oxidizing Archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539PubMedCrossRefGoogle Scholar
  56. 56.
    Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  57. 57.
    Barberan A, Fernandez-Guerra A, Auguet JC, Galand PE, Casamayor EO (2011) Phylogenetic ecology of widespread uncultured clades of the kingdom Euryarchaeota. Mol Ecol 20:1988–1996PubMedCrossRefGoogle Scholar
  58. 58.
    Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850PubMedCrossRefGoogle Scholar
  59. 59.
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL et al (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590PubMedCrossRefGoogle Scholar
  60. 60.
    Meng J, Xu J, Qin D, He Y, Xiao X et al (2014) Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Webster G, O’Sullivan LA, Meng Y, Williams AS, Sass AM et al (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91:1–18PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815–2820PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Singh SK, Verma P, Ramaiah N, Chandrashekar AA, Shouche YS (2010) Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India. Res Microbiol 161:177–186PubMedCrossRefGoogle Scholar
  64. 64.
    Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA et al (2013) Predominant Archaea in marine sediments degrade detrital proteins. Nature 496:215–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mylène Hugoni
    • 1
    • 2
  • Hélène Agogué
    • 3
  • Najwa Taib
    • 1
    • 2
  • Isabelle Domaizon
    • 4
  • Anne Moné
    • 1
    • 2
  • Pierre E. Galand
    • 5
  • Gisèle Bronner
    • 1
    • 2
  • Didier Debroas
    • 1
    • 2
  • Isabelle Mary
    • 1
    • 2
    • 6
    Email author
  1. 1.Laboratoire “Microorganismes: Génome et Environnement”Clermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6023, LMGEAubiereFrance
  3. 3.Littoral, Environnement et Sociétés (LIENs), UMR 7266, CNRSUniversity of La RochelleLa RochelleFrance
  4. 4.Institut National de la Recherche AgronomiqueUMR 42 Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes LimniquesThonon les BainsFrance
  5. 5.UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire OcéanologiqueSorbonne UniversitésBanyuls sur MerFrance
  6. 6.LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023University Blaise Pascal (Clermont-Ferrand II)AubièreFrance

Personalised recommendations