Advertisement

Microbial Ecology

, Volume 69, Issue 4, pp 758–767 | Cite as

Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood

  • Zewei Song
  • Andrew Vail
  • Michael J. Sadowsky
  • Jonathan S. SchillingEmail author
Fungal Microbiology

Abstract

The relative amounts of hyphal inoculum in forest soils may determine the capacity for fungi to compete with and replace early colonizers of wood in ground contact. Our aim in this study was to test the flexibility of priority effects (colonization timing) by varying the timing of inoculum introduction (i.e., precolonization) and amount of inoculum (i.e., inoculum potential). We controlled these variables in soil-block microcosms using fungi with known competitive outcomes in similar conditions, tracking isolate-specific fungal biomass, and residue physiochemistry over time. In the precolonization trial (experiment I), a brown rot fungus Gloeophyllum trabeum was given 1, 3, or 5 weeks to precolonize wood blocks (oak, birch, pine, and spruce) prior the introduction of a white rot fungus, Irpex lacteus, a more aggressive colonizer in this set-up. In the inoculum potential trial (experiment II), the fungi were inoculated simultaneously, but with eightfold higher brown rot inoculum than that of experiment I. As expected, longer precolonization duration increased the chance for the less-competitive brown rot fungus to outcompete its white rot opponent. Higher brown rot fungal inoculum outside of the wood matrix also resulted in competitive success for the brown rot isolate in most cases. These temporal shifts in fungal dominance were detectable in a ‘community snapshot’ as isolate-specific quantitative PCR, but also as functionally-relevant consequences of wood rot type, including carbohydrate depolymerization and pH. These results from a controlled system reinforce fungal-fungal interaction and suggest that relative inoculum availability beyond the wood matrix (i.e., soils) might regulate the duration of priority effects and shift the functional trajectory of wood decomposition.

Keywords

Fungi Priority effects Community assembly Competition Wood decomposition 

Notes

Acknowledgments

This research was made possible through the generous support of the Conservation and the Environment grants program of The Andrew W. Mellon Foundation (New York, NY). We thank the University of Minnesota Graduate School for Grant-in-aid of Research, Artistry and Scholarship funding in the initial stages of method development. A doctoral dissertation fellowship of the University of Minnesota, awarded to Zewei Song, also provided generous support for this research. We also wanted to thank Dr. Seavey in helping produce the wood blocks.

Supplementary material

248_2015_588_MOESM1_ESM.docx (441 kb)
Fig S1 (DOCX 441 kb)
248_2015_588_MOESM2_ESM.docx (1.6 mb)
Fig S2 (DOCX 1680 kb)
248_2015_588_MOESM3_ESM.docx (1 mb)
Fig S3 (DOCX 1060 kb)
248_2015_588_MOESM4_ESM.docx (15 kb)
Table S1 (DOCX 14.7 kb)

References

  1. 1.
    Harmon ME, Franklin JF, Swanson F et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:135–305Google Scholar
  2. 2.
    Malhi Y (2002) Carbon in the atmosphere and terrestrial biosphere in the 21st century. Phil Trans R Soc Lond A 360:2925–2945CrossRefGoogle Scholar
  3. 3.
    Weedon JT, Cornwell WK, Cornelissen C et al (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. doi: 10.1111/j.1461-0248.2008.01259.x CrossRefPubMedGoogle Scholar
  4. 4.
    Freschet GT, Weedon JT, Aerts R et al (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100:161–170. doi: 10.1111/j.1365-2745.2011.01896.x CrossRefGoogle Scholar
  5. 5.
    Gilbertson R (1980) Wood-rotting fungi of North America. Mycologia 72:1–49CrossRefGoogle Scholar
  6. 6.
    Riley R, Salamov AA, Brown DW et al (2014) Extensive sampling of Basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci. doi: 10.1073/pnas.1400592111 Google Scholar
  7. 7.
    Rypáček V, Rypáčková M (1975) Brown rot of wood as a model for studies of lignocellulose humification. Biol Plant 17:452–457CrossRefGoogle Scholar
  8. 8.
    Jurgensen M, Harvey A (1997) Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For Sci 43:234–251Google Scholar
  9. 9.
    Filley T, Goodell B, Cody G et al (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124. doi: 10.1016/S0146-6380(01)00144-9 CrossRefGoogle Scholar
  10. 10.
    Song Z, Vail A, Sadowsky MJ, Schilling JS (2012) Competition between two wood-degrading fungi with distinct influences on residues. FEMS Microbiol Ecol 79:109–117. doi: 10.1111/j.1574-6941.2011.01201.x CrossRefPubMedGoogle Scholar
  11. 11.
    Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–403. doi: 10.1146/annurev.py.29.090191.002121 CrossRefGoogle Scholar
  12. 12.
    Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446:49–54. doi: 10.1016/S0014-5793(99)00180-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185. doi: 10.1006/fgbi.1999.1150 CrossRefPubMedGoogle Scholar
  14. 14.
    Schwarze F (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170. doi: 10.1016/j.fbr.2007.09.001 CrossRefGoogle Scholar
  15. 15.
    Worrall J, Anagnost S, Zabel R (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219CrossRefGoogle Scholar
  16. 16.
    Bradford MA, Warren RJ II, Baldrian P et al (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630. doi: 10.1038/nclimate2251 CrossRefGoogle Scholar
  17. 17.
    Fukami T, Dickie I, Wilkie JP et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi: 10.1111/j.1461-0248.2010.01465.x CrossRefPubMedGoogle Scholar
  18. 18.
    Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391. doi: 10.1126/science.1187820 CrossRefPubMedGoogle Scholar
  19. 19.
    Lebrija-Trejos E, Pérez-García EA, Meave JA et al (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398CrossRefPubMedGoogle Scholar
  20. 20.
    Garcia-Pichel F, Loza V, Marusenko Y et al (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577. doi: 10.1126/science.1236404 CrossRefPubMedGoogle Scholar
  21. 21.
    Fortunel C, Paine CET, Fine PV et al (2014) Environmental factors predict community functional composition in Amazonian forests. J Ecol 102:145–155. doi: 10.1111/1365-2745.12160 CrossRefGoogle Scholar
  22. 22.
    Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  23. 23.
    Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107CrossRefPubMedGoogle Scholar
  24. 24.
    Huston MA, Raffaelli D, Schmid B et al (2014) Biodiversity current and future functioning: challenges knowledge. Science 294:804–808Google Scholar
  25. 25.
    Niemela T, Renvall P, Penttila R (1995) Interactions of fungi at late stages of wood decomposition. Ann Bot Fenn 32:141–152Google Scholar
  26. 26.
    Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625. doi: 10.1111/j.1461-0248.2005.00757.x CrossRefGoogle Scholar
  27. 27.
    Tan J, Pu Z, Ryberg W, Jiang L (2012) Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93:1164–1172CrossRefPubMedGoogle Scholar
  28. 28.
    Dickie I, Fukami T, Wilkie JP et al (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15:133–141. doi: 10.1111/j.1461-0248.2011.01722.x CrossRefPubMedGoogle Scholar
  29. 29.
    Schubert M, Fink S, Schwarze FWMR (2008) Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol Control 45:111–123. doi: 10.1016/j.biocontrol.2008.01.001 CrossRefGoogle Scholar
  30. 30.
    Susi P, Aktuganov G, Himanen J, Korpela T (2011) Biological control of wood decay against fungal infection. J Environ Manag 92:1681–1689. doi: 10.1016/j.jenvman.2011.03.004 CrossRefGoogle Scholar
  31. 31.
    Liu R, Luo X (1994) A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol 128:89–92CrossRefGoogle Scholar
  32. 32.
    Rao A, Rao M (1963) Inoculum potential and the fusarial wilt of cotton. Nature 200:598–599CrossRefGoogle Scholar
  33. 33.
    Daniels B, McCool P, Menge J (1981) Comparative inoculum potential of spores of six vesicular‐arbuscular mycorrhizal fungi. New Phytol 89:385–391CrossRefGoogle Scholar
  34. 34.
    Holmer L, Stenlid J (1993) The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol Ecol 12:169–176. doi: 10.1111/j.1574-6941.1993.tb00029.x CrossRefGoogle Scholar
  35. 35.
    Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075. doi: 10.1111/j.1365-2745.2008.01411.x CrossRefGoogle Scholar
  36. 36.
    Schilling JS, Jellison J (2005) Oxalate regulation by two brown rot fungi decaying oxalate-amended and non-amended wood. Holzforschung 59:681–688. doi: 10.1515/HF.2005.109 CrossRefGoogle Scholar
  37. 37.
    Jasalavich CA, Ostrofsky A, Jellison J (2000) Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA. Appl Environ Microbiol 66:4725–4734CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Song Z, Vail A, Sadowsky MJ, Schilling JS (2014) Quantitative PCR for measuring biomass of decomposer fungi in planta. Fungal Ecol 7:39–46. doi: 10.1016/j.funeco.2013.12.004 CrossRefGoogle Scholar
  39. 39.
    Shortle W, Dudzik K, Smith K (2010) Development of wood decay in wound-initiated discolored wood of eastern red cedar. Holzforschung 64:529–536. doi: 10.1515/HF.2010.051 CrossRefGoogle Scholar
  40. 40.
    Qualhato TF, Lopes FAC, Steindorff AS et al (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35:1461–1468. doi: 10.1007/s10529-013-1225-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Zabel RA, Morrell JJ (1992) Wood microbiology—Decay and its prevention. Academic Press, Inc., San DiegoGoogle Scholar
  42. 42.
    Cease K, Blanchette R, Highley T (1989) Interactions between Scytalidium species and brown-or white-rot basidiomycetes in birch wood. Wood Sci Technol 61:151–161Google Scholar
  43. 43.
    Zakaria A, Boddy L (2002) Mycelial foraging by Resinicium bicolor: interactive effects of resource quantity, quality and soil composition. FEMS Microbiol Ecol 40:135–142CrossRefPubMedGoogle Scholar
  44. 44.
    Herman J, Moorhead D, Berg B (2008) The relationship between rates of lignin and cellulose decay in aboveground forest litter. Soil Biol Biochem 40:2620–2626. doi: 10.1016/j.soilbio.2008.07.003 CrossRefGoogle Scholar
  45. 45.
    Ferguson B, Dreisbach T (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J For Res 623:612–623. doi: 10.1139/X03-065 CrossRefGoogle Scholar
  46. 46.
    Snajdr J, Dobiášová P, Větrovský T et al (2011) Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiol Ecol 78:80–90. doi: 10.1111/j.1574-6941.2011.01123.x CrossRefPubMedGoogle Scholar
  47. 47.
    Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640CrossRefPubMedGoogle Scholar
  48. 48.
    Peay KG, Bruns TD (2014) Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. doi: 10.1111/nph.12906 Google Scholar
  49. 49.
    Stenlid J, Gustafsson M (2001) Are rare wood decay fungi threatened by inability to spread? Ecol Bull 49:85–91Google Scholar
  50. 50.
    Schilling JS (2010) Effects of calcium-based materials and iron impurities on wood degradation by the brown rot fungus Serpula lacrymans. Holzforschung 64:93–99. doi: 10.1515/HF.2010.009 CrossRefGoogle Scholar
  51. 51.
    Liew FJ, Schilling JS (2012) Choice tests and neighbor effects during fungal brown rot of copper- or non-treated wood. Int Biodeterior Biodegrad 74:7–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zewei Song
    • 1
  • Andrew Vail
    • 3
  • Michael J. Sadowsky
    • 3
    • 4
  • Jonathan S. Schilling
    • 1
    • 2
    Email author
  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. PaulUSA
  2. 2.Institute on the EnvironmentUniversity of MinnesotaSt. PaulUSA
  3. 3.BioTechnology InstituteUniversity of MinnesotaSt. PaulUSA
  4. 4.Department of Soil, Water, and ClimateUniversity of MinnesotaSt. PaulUSA

Personalised recommendations