Microbial Ecology

, Volume 69, Issue 4, pp 895–904 | Cite as

Metagenomic Assessment of the Potential Microbial Nitrogen Pathways in the Rhizosphere of a Mediterranean Forest After a Wildfire

  • José F. Cobo-Díaz
  • Antonio J. Fernández-González
  • Pablo J. Villadas
  • Ana B. Robles
  • Nicolás Toro
  • Manuel Fernández-LópezEmail author
Environmental Microbiology


Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.


Metagenomics Microbial communities Nitrogen cycle Rhizosphere Wildfire Mediterranean forest 



We would like to thank the authorities of the Sierra Nevada National Park for the access, facilities, and soil sampling. This work was funded by the following grants: P08-CVI-03549 from the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía, OAPN 021/2007 and OAPN 748/2012 from the Organismo Autónomo Parques Nacionales (Ministry of the Environment), including ERDF (European Regional Development Fund). JFCD was awarded a predoctoral fellowship from the Junta de Andalucia, and AJFG was awarded a predoctoral fellowship (FPU) from the Spanish Ministry of Education.

Supplementary material

248_2015_586_MOESM1_ESM.docx (2.6 mb)
Fig. S1 Description of the sampled areas. A) Location of study areas with its GPS position coordinates, altitude and kind of vegetation. B) Geographic location of the sampled sites at Sierra Nevada. UOF, undisturbed holm-oak forest; BOF, burned holm-oak forest; BBS, burned bulk soil with grasses and shrub before the wildfire. (DOCX 2696 kb)
248_2015_586_MOESM2_ESM.docx (102 kb)
Fig. S2 Rarefaction curves (A) and coverage table (B) for the nifH gene clone libraries. UOF, undisturbed holm-oak forest; BOF, burned holm-oak forest; BBS, burned bulk soil with grasses and shrub before the wildfire. (DOCX 102 kb)
248_2015_586_MOESM3_ESM.docx (86 kb)
Fig. S3 Agglomerative hierarchical clustering of the NifH proteins of each library with the Euclidean distance matrix and UPGMA algorithm. Analyses were carried out on the abundance of each OTU defined by a 93 % similarity cut-off. The name of each branch corresponds to the sampled site: UOF (undisturbed holm-oak forest), BOF (rhizosphere of burned holm-oak forest), BBS (burned bulk soil). (DOCX 86 kb)


  1. 1.
    Clark SC (1996) Mediterranean ecology and an ecological synthesis of the field sites. In: Brandt CJ, Thornes JB (eds.) Mediterranean desertification and land use. John Wiley and sons, Ltd. pp. 271-301Google Scholar
  2. 2.
    Pausas JG (2006) Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187:249–259CrossRefGoogle Scholar
  3. 3.
    Felicísimo ÁM, Muñoz J, Villalba CJ, Mateo RG (2011) Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española. 1. Flora y vegetación. Ministerio de Medio Ambiente y Medio Rural y Marino, MadridGoogle Scholar
  4. 4.
    Gómez-Zotano J, Moreno-Sánchez JJ, Rodríguez-Martínez F (2005) El incendio de Sierra Nevada (22-24 de septiembre de 2005). Una catástrofe ecológica. Cuadernos Geográficos 37:205–214Google Scholar
  5. 5.
    Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10CrossRefPubMedGoogle Scholar
  6. 6.
    Choromanska U, DeLuca TH (2002) Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–271CrossRefGoogle Scholar
  7. 7.
    Prieto-Fernández A, Acea MJ, Carballas T (1998) Soil microbial and extractable C and N after wildfire. Biol Fertil Soils 27:132–142CrossRefGoogle Scholar
  8. 8.
    Wang Q, Zhong M, Wang S (2012) A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For Ecol Manag 271:91–97CrossRefGoogle Scholar
  9. 9.
    Bárcenas-Moreno G, García-Orenes F, Mataix-Solera J, Mataix-Beneyto J, Bååth E (2011) Soil microbial recolonisation after a fire in a Mediterranean forest. Biol Fertil Soils 47:261–272CrossRefGoogle Scholar
  10. 10.
    Smith NR, Kishchuk BE, Mohn WW (2008) Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl Environ Microbiol 74:216–224CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Yeager CM, Northup DE, Grow CC, Barns SM, Kuske CR (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl Environ Microbiol 71:2713–2722CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Allen CD, Savage M, Falk DA, Suckling KF, Swetnam TW, Schulke T, Stacey PM, Hoffman M, Klingelm JT (2002) Ecological restoration of Southwestern ponderosa pine ecosystems: a broad perspective. Ecol Appl 12:1418–1433CrossRefGoogle Scholar
  13. 13.
    Goodale CL, Aber JD (2001) The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–267CrossRefGoogle Scholar
  14. 14.
    Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefPubMedGoogle Scholar
  15. 15.
    Kennedy N, Egger KN (2010) Impact of wildfire intensity and logging on fungal and nitrogen-cycling bacterial communities in British Columbia forest soils. For Ecol Manag 260:787–794CrossRefGoogle Scholar
  16. 16.
    Wallenstein MD, Vilgalys RJ (2005) Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia 49:665–672CrossRefGoogle Scholar
  17. 17.
    Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, de Melo IS (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7(6):e38600CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557CrossRefPubMedGoogle Scholar
  19. 19.
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRefPubMedGoogle Scholar
  20. 20.
    Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317CrossRefPubMedGoogle Scholar
  21. 21.
    Falgueras J, Lara AJ, Fernández-Pozo N, Cantón FR, Pérez-Trabado G, Claros MG (2010) SeqTrim: a high-throughput pipeline for preprocessing any type of sequence read. BMC Bioinforma 11:38CrossRefGoogle Scholar
  22. 22.
    Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386CrossRefGoogle Scholar
  23. 23.
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721CrossRefPubMedGoogle Scholar
  24. 24.
    White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. doi: 10.1371/journal.pcbi.1000352 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Widmer F, Shaffer BT, Porteus LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Appl Environ Microbiol 65:374–380PubMedCentralPubMedGoogle Scholar
  26. 26.
    Villadas PJ, Fernández-López M, Ramírez-Saad H, Toro N (2007) Rhizosphere-bacterial community in Eperua falcata (Caesalpiniaceae) a putative nitrogen-fixing tree from French Guiana rainforest. Microb Ecol 53:317–327CrossRefPubMedGoogle Scholar
  27. 27.
    Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    De Cáceres M, Font X, Oliva F, Vives S (2007) GINKGO, a program for non-standard multivariate fuzzy analysis. Adv Fuzzy Sets Syst 2:41–56Google Scholar
  31. 31.
    Marañón-Jiménez S, Castro J (2013) Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 112:519–535CrossRefGoogle Scholar
  32. 32.
    Williams RJ, Hallgren SW, Wilson GWT (2012) Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For Ecol Manag 265:241–247CrossRefGoogle Scholar
  33. 33.
    Jiménez-Esquilín AE, Stromberger ME, Shepperd WD (2008) Soil scarification and wildfire interactions and effects on microbial communities and carbon. Soil Sci Soc Am J 72:111–118CrossRefGoogle Scholar
  34. 34.
    Parker JL, Fernández IJ, Rustad LE, Norton SA (2001) Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Sci Soc Am J 65:1248–1255CrossRefGoogle Scholar
  35. 35.
    Switzer JM, Hope GD, Grayston SJ, Prescott CE (2012) Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. For Ecol Manag 275:1–13CrossRefGoogle Scholar
  36. 36.
    Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33:176–180CrossRefPubMedGoogle Scholar
  37. 37.
    Goberna M, García C, Insam H, Hernández MT, Verdú M (2012) Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microb Ecol 64:242–255CrossRefPubMedGoogle Scholar
  38. 38.
    Wang P, Kong C, Sun B, Xu X (2010) Allantoin-induced changes of microbial diversity and community in rice soil. Plant Soil 332:357–368CrossRefGoogle Scholar
  39. 39.
    Shaffer BT, Widmer F, Porteous LA, Seidler RJ (2000) Temporal and spatial distribution of the nifH gene of N2 fixing bacteria in forests and clear cuts in western Oregon. Microb Ecol 39:12–21CrossRefPubMedGoogle Scholar
  40. 40.
    Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21(3):541–554CrossRefPubMedGoogle Scholar
  41. 41.
    Moseby AH, Burgos J, Reed J, Tobin-Janzen T (2000) Isolation and identification of soil bacteria from the Centralia mine fire area. J Pennsylvania Acad Sci 73:150Google Scholar
  42. 42.
    Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392CrossRefGoogle Scholar
  43. 43.
    Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092CrossRefPubMedGoogle Scholar
  44. 44.
    Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • José F. Cobo-Díaz
    • 1
  • Antonio J. Fernández-González
    • 1
  • Pablo J. Villadas
    • 1
  • Ana B. Robles
    • 2
  • Nicolás Toro
    • 1
  • Manuel Fernández-López
    • 1
    Email author
  1. 1.Grupo de Ecología Genética de la Rizosfera, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
  2. 2.Grupo de Pastos y Sistemas Silvopastorales Mediterráneos, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations