Microbial Ecology

, Volume 70, Issue 2, pp 411–424 | Cite as

Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs

  • Peter Menzel
  • Sóley Ruth Gudbergsdóttir
  • Anne Gunn Rike
  • Lianbing Lin
  • Qi Zhang
  • Patrizia Contursi
  • Marco Moracci
  • Jakob K. Kristjansson
  • Benjamin Bolduc
  • Sergey Gavrilov
  • Nikolai Ravin
  • Andrey Mardanov
  • Elizaveta Bonch-Osmolovskaya
  • Mark Young
  • Anders Krogh
  • Xu Peng
Environmental Microbiology

Abstract

Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

Keywords

Metagenomics Hot springs HTS Thermophiles 

Supplementary material

248_2015_576_MOESM1_ESM.pdf (1.9 mb)
(PDF 1.93 MB)

References

  1. 1.
    Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–10. doi:10.1016/S0022-2836(05)80360-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Burgess E, Unrine J, Mills G, Romanek C, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–89. doi:10.1007/s00248-011-9979-4 PubMedCrossRefGoogle Scholar
  3. 3.
    Cambillau C, Claverie J (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275(32):383–6. doi:10.1074/jbc.C000497200 Google Scholar
  4. 4.
    Chevreux B, Pfisterer T, Drescher B, Driesel A, Müller W, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–59. doi:10.1101/gr.1917404 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. doi:10.1111/j.1654-1103.2003.tb02228.x CrossRefGoogle Scholar
  6. 6.
    Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–31. doi:10.1073/pnas.0507535103 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hou W, Wang S, Dong H, Jiang H, Briggs B, Peacock J, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth J, Hedlund B, Zhang C, Hartnett H, Dijkstra P, Hungate B (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:e53,350. doi:10.1371/journal.pone.0053350 CrossRefGoogle Scholar
  8. 8.
    Huson D, Mitra S (2012) Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol Biol 856:415–29. doi:10.1007/978-1-61779-585-5_17 PubMedCrossRefGoogle Scholar
  9. 9.
    Huson D, Mitra S, Ruscheweyh H, Weber N, Schuster S (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–60. doi:10.1101/gr.120618.111 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Inskeep W, Jay Z, Herrgard M, Kozubal M, Rusch D, Tringe S, Macur R, Jennings R, Boyd E, Spear J, Roberto F (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature Archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol 4:95. doi:10.3389/fmicb.2013.00095 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Inskeep W, Jay Z, Tringe S, Herrgård M, Rusch D (2013) YNP Metagenome Project Steering Committee and Working Group Members:f The YNP metagenome project: Environmental parameters responsible for microbial distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol 4:67. doi:10.3389/fmicb.2013.00067 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Inskeep W, Rusch D, Jay Z, Herrgard M, Kozubal M, Richardson T, Macur R, Hamamura N, Jennings R, Fouke B, Reysenbach A, Roberto F, Young M, Schwartz A, Boyd E, Badger J, Mathur E, Ortmann A, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One e9773:5. doi:10.1371/journal.pone.0009773 Google Scholar
  13. 13.
    Jiang B, Song K, Ren J, Deng M, Sun F, Zhang X (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics 13:730. doi:10.1186/1471-2164-13-730 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Klatt C, Wood J, Rusch D, Bateson M, Hamamura N, Heidelberg J, Grossman A, Bhaya D, Cohan F, Kühl M, Bryant D, Ward D (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–78. doi:10.1038/ismej.2011.73 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kreil D, Ouzounis C (2001) Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 29:1608–15PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lewin A, Wentzel A, Valla S (2012) Metagenomics of microbial life in extreme temperature environments. Curr Opin BiotechnolGoogle Scholar
  17. 17.
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, PreprintGoogle Scholar
  18. 18.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–9. doi:10.1093/bioinformatics/btl158 PubMedCrossRefGoogle Scholar
  20. 20.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–35. doi:10.1128/AEM.71.12.8228-8235.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Magoč T, Salzberg S (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–63. doi:10.1093/bioinformatics/btr507 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen Y, Chen Z, Dewell S, Du L, Fierro J, Gomes X, Godwin B, He W, Helgesen S, Ho C, Ho C, Irzyk G, Jando S, Alenquer M, Jarvie T, Jirage K, Kim J, Knight J, Lanza J, Leamon J, Lefkowitz S, Lei M, Li J, Lohman K, Lu H, Makhijani V, McDade K, McKenna M, Myers E, Nickerson E, Nobile J, Plant R, Puc B, Ronan M, Roth G, Sarkis G, Simons J, Simpson J, Srinivasan M, Tartaro K, Tomasz A, Vogt K, Volkmer G, Wang S, Wang Y, Weiner M, Yu P, Begley R, Rothberg J (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80. doi:10.1038/nature03959 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Marsh C, Larsen D (1953) Characterization of some thermophilic bacteria from the hot springs of Yellowstone National Park. J Bacteriol 65:193–7PubMedCentralPubMedGoogle Scholar
  24. 24.
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards R (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi:10.1186/1471-2105-9-386 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Miller S, Strong A, Jones K, Ungerer M (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in yellowstone national park. Appl Environ Microbiol 75:4565–72. doi:10.1128/AEM.02792-08 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Moser M, DiFrancesco R, Gowda K, Klingele A, Sugar D, Stocki S, Mead D, Schoenfeld T (2012) Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS One 7(e38):371. doi:10.1371/journal.pone.0038371 Google Scholar
  27. 27.
    Myers E, Sutton G, Delcher A, Dew I, Fasulo D, Flanigan M, Kravitz S, Mobarry C, Reinert K, Remington K, Anson E, Bolanos R, Chou H, Jordan C, Halpern A, Lonardi S, Beasley E, Brandon R, Chen L, Dunn P, Lai Z, Liang Y, Nusskern D, Zhan M, Zhang Q, Zheng X, Rubin G, Adams M, Venter J (2000) A whole-genome assembly of drosophila. Science 287:2196–204PubMedCrossRefGoogle Scholar
  28. 28.
    Overbeek R, Begley T, Butler R, Choudhuri J, Chuang H, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank E, Gerdes S, Glass E, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy A, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch G, Rodionov D, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–702. doi:10.1093/nar/gki866 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Price M, Dehal P, Arkin A (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. doi:10.1371/journal.pone.0009490 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Pruesse E, Peplies J, Glöckner F (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–9. doi:10.1093/bioinformatics/bts252 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Riesenfeld C, Schloss P, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–52. doi:10.1146/annurev.genet.38.072902.091216 PubMedCrossRefGoogle Scholar
  33. 33.
    Rusch D, Halpern A, Sutton G, Heidelberg K, Williamson S, Yooseph S, Wu D, Eisen J, Hoffman J, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter J, Li K, Kravitz S, Heidelberg J, Utterback T, Rogers Y, Falcón L, Souza V, Bonilla-Rosso G, Eguiarte L, Karl D, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari M, Strausberg R, Nealson K, Friedman R, Frazier M, Venter J (2007) The sorcerer II global ocean sampling expedition: northwest atlantic through eastern tropical pacific. PLoS Biol e77:5. doi:10.1371/journal.pbio.0050077 Google Scholar
  34. 34.
    Saelensminde G, Halskau J, Helland R, Willassen N, Jonassen I (2007) Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins. Extremophiles 11:585–96. doi:10.1007/s00792-007-0072-3 PubMedCrossRefGoogle Scholar
  35. 35.
    Saelensminde G, Halskau J, Jonassen I (2009) Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles 13:11–20. doi:10.1007/s00792-008-0192-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–62. doi:10.1007/s00792-013-0548-2 PubMedCrossRefGoogle Scholar
  37. 37.
    Salter S, Cox M, Turek E, Calus S, Cookson W, Moffatt M, Turner P, Parkhill J, Loman N, Walker A (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–76. doi:10.1007/s00253-009-2233-z PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sommer D, Delcher A, Salzberg S, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64. doi:10.1186/1471-2105-8-64 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Suhre K, Claverie J (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem 278 (17):198–202. doi:10.1074/jbc.M301327200 Google Scholar
  41. 41.
    Teal T, Schmidt T (2010) Identifying and removing artificial replicates from 454 pyrosequencing data. Cold Spring Harb Protoc 2010:pdb.prot5409. doi:10.1101/pdb.prot5409 PubMedCrossRefGoogle Scholar
  42. 42.
    Tringe S, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–6. doi:10.1016/j.mib.2008.09.011 PubMedCrossRefGoogle Scholar
  43. 43.
    Urbieta M, González Toril E, Aguilera A, Giaveno M, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in neuquén, argentina. Microb Ecol 64:91–104. doi:10.1007/s00248-011-9997-2 PubMedCrossRefGoogle Scholar
  44. 44.
    Valverde A, Tuffin M, Cowan D (2012) Biogeography of bacterial communities in hot springs: a focus on the actinobacteria. Extremophiles 16:669–79. doi:10.1007/s00792-012-0465-9 PubMedCrossRefGoogle Scholar
  45. 45.
    Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the kamchatka peninsula. Archaea 2013(136):714. doi:10.1155/2013/136714 Google Scholar
  46. 46.
    Zeldovich K, Berezovsky I, Shakhnovich E (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol e5:3. doi:10.1371/journal.pcbi.0030005 Google Scholar
  47. 47.
    Zhao Y, Tang H, Ye Y (2012) RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28:125–6. doi:10.1093/bioinformatics/btr595 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Peter Menzel
    • 1
  • Sóley Ruth Gudbergsdóttir
    • 1
  • Anne Gunn Rike
    • 2
  • Lianbing Lin
    • 3
  • Qi Zhang
    • 3
  • Patrizia Contursi
    • 4
  • Marco Moracci
    • 5
  • Jakob K. Kristjansson
    • 6
  • Benjamin Bolduc
    • 7
  • Sergey Gavrilov
    • 8
  • Nikolai Ravin
    • 9
  • Andrey Mardanov
    • 9
  • Elizaveta Bonch-Osmolovskaya
    • 8
  • Mark Young
    • 7
  • Anders Krogh
    • 1
  • Xu Peng
    • 1
  1. 1.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Norwegian Geotechnical InstituteOsloNorway
  3. 3.Biotechnology Research CenterKunming University of Science and TechnologyKunmingChina
  4. 4.Dipartimento di BiologiaUniversità degli Studi di Napoli “Federico II”NapoliItaly
  5. 5.Department of Biology, Agriculture and Food ScienceInstitute of Biosciences and BioresourcesNaplesItaly
  6. 6. ReykjavikIceland
  7. 7.Montana State UniversityBozemanUSA
  8. 8.Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscowRussia
  9. 9.Bioengineering CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations