Microbial Ecology

, Volume 70, Issue 2, pp 301–310 | Cite as

Multiple Symbiodinium Strains Are Hosted by the Brazilian Endemic Corals Mussismilia spp.

  • Arthur W. Silva-Lima
  • Juline M. Walter
  • Gizele D. Garcia
  • Naiara Ramires
  • Glaucia Ank
  • Pedro M. Meirelles
  • Alberto F. Nobrega
  • Inacio D. Siva-Neto
  • Rodrigo L. Moura
  • Paulo S. Salomon
  • Cristiane C. Thompson
  • Fabiano L. Thompson
Microbiology of Aquatic Systems


Corals of genus Mussismilia (Mussidae) are one of the oldest extant clades of scleractinians. These Neogene relicts are endemic to the Brazilian coast and represent the main reef-building corals in the Southwest Atlantic Ocean (SAO). The relatively low-diversity/high-endemism SAO coralline systems are under rapid decline from emerging diseases and other local and global stressors, but have not been severely affected by coral bleaching. Despite the biogeographic significance and importance for understanding coral resilience, there is scant information about the diversity of Symbiodinium in this ocean basin. In this study, we established the first culture collections of Symbiodinium from Mussismilia hosts, comprising 11 isolates, four of them obtained by fluorescent-activated cell sorting (FACS). We also analyzed Symbiodinium diversity directly from Mussismilia tissue samples (N = 16) and characterized taxonomically the cultures and tissue samples by sequencing the dominant ITS2 region. Symbiodinium strains A4, B19, and C3 were detected. Symbiodinium C3 was predominant in the larger SAO reef system (Abrolhos), while Symbiodinium B19 was found only in deep samples from the oceanic Trindade Island. Symbiodinium strains A4 and C3 isolates were recovered from the same Mussismilia braziliensis coral colony. In face of increasing threats, these results indicate that Symbiodinium community dynamics shall have an important contribution for the resilience of Mussismilia spp. corals.


Coral reefs Symbiodinium Mussismilia ITS2 Clonal cultures Southwestern Atlantic Ocean (SAO) 



The authors thank CNPq, CAPES, and FAPERJ for the core financial support to this work and Mr. Bruno Maia for technical assistance in the flow cytometer. The Abrolhos National Marine Park (ICMBio, Ministry of Environment), Brazilian Navy, Conservation International and the Rede Abrolhos ( contributed with permits, logistics, and field support in Abrolhos and Trindade Island.

Supplementary material

248_2015_573_MOESM1_ESM.xls (108 kb)
Table S1 ClustalW alignment among Symbiodinium clade C sequences. C1, C3, C15 and C90 sequences from GenBank were used to support the analysis. All clade C sequences obtained in this study grouped together with C3 on phylogenetic analysis (Fig. 1) and had an “A” on position 196, matching Symbiodinium C3 types (XLS 108 kb)


  1. 1.
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5(5):355–362PubMedCrossRefGoogle Scholar
  2. 2.
    Muller-Parker G, Davy SK (2001) Temperate and tropical algal-sea anemone symbioses. Invertebr Biol 120:104–123CrossRefGoogle Scholar
  3. 3.
    Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  4. 4.
    Dubinsky Z, Berman-Frank I (2001) Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquat Sci 63:4–17CrossRefGoogle Scholar
  5. 5.
    Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  6. 6.
    Sheppard CRC, Davy SK, Pilling GM (2009) The biology of coral reefs. Oxford University Press, New York, 352ppCrossRefGoogle Scholar
  7. 7.
    Ladner JT, Barshis DJ, Palumbi SR (2012) Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium D. BMC Evol Biol 12:217PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, Berkeley, 416ppGoogle Scholar
  9. 9.
    Pochon X, Pawlowski J (2006) Evolution of the soritids-Symbiodinium symbiosis. Symbiosis 42:77–88Google Scholar
  10. 10.
    Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933PubMedCrossRefGoogle Scholar
  11. 11.
    Intergovernmental Panel on Climate Change, IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge 976ppGoogle Scholar
  12. 12.
    LaJeunesse TC, Smith R, Walther M, Pinzón JH, Pettay T, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magana AL, Perez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination vs. natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc Roy Soc Lond Ser B 277:2925–2934CrossRefGoogle Scholar
  13. 13.
    De'ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109(44):7995–7999CrossRefGoogle Scholar
  14. 14.
    Fitt, Trench (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432CrossRefGoogle Scholar
  15. 15.
    Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080PubMedCrossRefGoogle Scholar
  16. 16.
    Kurihara T, Yamada H, Inoue K, Iwai K, Hatta M (2013) Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater. PLoS ONE 8(4):e61156PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pochon X, Gates RD (2010) A new Symbiodinium (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497PubMedCrossRefGoogle Scholar
  18. 18.
    Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571CrossRefGoogle Scholar
  19. 19.
    Fabina NS, Putnam HM, Franklin EC, Stat M, Gates RD (2012) Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks. PLoS ONE 7(9):e44970. doi: 10.1371/journal.pone.0044970 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53CrossRefGoogle Scholar
  21. 21.
    Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156CrossRefGoogle Scholar
  22. 22.
    Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida. Coral Reefs 31:157–161CrossRefGoogle Scholar
  23. 23.
    Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351PubMedCrossRefGoogle Scholar
  24. 24.
    Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. PNAS 92:2850–2853PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062CrossRefGoogle Scholar
  26. 26.
    Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078CrossRefGoogle Scholar
  27. 27.
    Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol Ecol Resour 12(2):369–373PubMedCrossRefGoogle Scholar
  28. 28.
    LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22(3):570–581PubMedCrossRefGoogle Scholar
  29. 29.
    Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359PubMedCrossRefGoogle Scholar
  30. 30.
    Toller WW, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373PubMedCrossRefGoogle Scholar
  31. 31.
    LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  32. 32.
    LaJeunesse TC, Bhagooli R, Hidaka M, Done T, Devanter L, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely-related Symbiodinium spp. differ in relative dominance within coral reef host communities across environmental, latitudinal, and biogeographic gradients. Mar Ecol Prog Ser 284:147–161CrossRefGoogle Scholar
  33. 33.
    Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43CrossRefGoogle Scholar
  34. 34.
    McCabe-Reynolds J, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. PNAS 105:13674–13678CrossRefGoogle Scholar
  35. 35.
    Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “Nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 2011. doi: 10.1155/2011/730715
  36. 36.
    van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc B 268:1759–1767PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  38. 38.
    Leão ZMAN, Kikuchi RKP (2005) A relic coral fauna threatened by global changes and human activities, Eastern Brazil. Mar Pollut Bull 51:599–611PubMedCrossRefGoogle Scholar
  39. 39.
    Francini-Filho RB, Moura RL, Thompson FL, Reis RM, Kaufman L, Kikuchi RK, Leão ZM (2008) Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil). Mar Pollut Bull 56:1008–1014PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia GD, Gregoracci GB, Santos EO, Meirelles PM, Silva GG, Edwards R, Sawabe T, Gotoh K, Nakamura S, Iida T, Moura RL, Thompson FL (2013) Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb Ecol 65(4):1076–1086PubMedCrossRefGoogle Scholar
  41. 41.
    Costa CF, Sassi R, Gorlach-Lira K (2008) Zooxanthellae genotypes in the coral Siderastrea stellata from coastal reefs in northeastern Brazil. J Exp Mar Biol Ecol 367(2):149–152CrossRefGoogle Scholar
  42. 42.
    Costa CF, Sassi R, Gorlach-Lira K, LaJeunesse TC, Fitt WK (2013) Seasonal changes in zooxanthellae harbored by zoanthids (Cnidaria, Zoanthidea) from coastal reefs in northeastern Brazil. Pan Am J Aquat Sci 8(4):253–264Google Scholar
  43. 43.
    Monteiro JG, Costa CF, Gorlach-Lira K, Fitt WK, Stefanni SS, Sassi R, Santos RS, LaJeunesse TC (2013) Ecological and biogeographic implications of Siderastrea symbiotic relationship with Symbiodinium sp. C46 in Sal Island (Cape Verde, East Atlantic Ocean). Mar Biodivers 43:261–272CrossRefGoogle Scholar
  44. 44.
    Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68(2):352–367PubMedCrossRefGoogle Scholar
  45. 45.
    Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Guth AZ, Lopes RM, Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117CrossRefGoogle Scholar
  46. 46.
    Cavalcanti GS, Gregoracci GB, Santos EO, Silveira CB, Meirelles PM, Longo L, Gotoh K, Nakamura S, Iida T, Sawabe T, Rezende CE, Francini-Filho R, Moura RL, Amado-Filho G, Thompson FL (2014) Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean. ISME J 8:52–62PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Bruce T, Meirelles PM, Garcia G, Paranhos R, Rezende CE, Moura RL, Francini-Filho RB, Coni EO, Vasconcelos AT, Amado Filho G, Hatay M, Schmieder R, Edwards R, Dinsdale E, Thompson FL (2012) Abrolhos Bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS One 7(6):e36687PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL et al (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: inferences on natural and anthropogenic drivers. PLoS One 8(1):e54260PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS One 7:e35171PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2008) Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 27:423–432CrossRefGoogle Scholar
  51. 51.
    Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297PubMedCrossRefGoogle Scholar
  52. 52.
    Pires DO, Castro CB, Ratto CC (1999) Reef coral reproduction in the Abrolhos Reef Complex, Brazil: the endemic genus Mussismilia. Mar Biol 135(3):463–471CrossRefGoogle Scholar
  53. 53.
    Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638CrossRefGoogle Scholar
  54. 54.
    Polne-Fuller M (1991) A novel technique for preparation of axenic cultures of Symbiodinium (Pyrrophyta) through selective digestion by amoebae. J Phycol 27:552–554CrossRefGoogle Scholar
  55. 55.
    Sampayo EM, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519PubMedCrossRefGoogle Scholar
  56. 56.
    Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325CrossRefGoogle Scholar
  57. 57.
    LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134PubMedCrossRefGoogle Scholar
  58. 58.
    LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  59. 59.
    Altschul SF, Gish W, Webb MW, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 213(3):403–410CrossRefGoogle Scholar
  60. 60.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  61. 61.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296CrossRefGoogle Scholar
  63. 63.
    Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Chapter 7. Elsevier, Amsterdam, pp 269–285Google Scholar
  64. 64.
    McBride BB, Muller-Parker G, Jakobsen HH (2009) Low thermal limit of growth rate of Symbiodinium californium (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones (Anthopleura spp.; Anthozoa, Cnidaria). J Phycol 45:855–863CrossRefGoogle Scholar
  65. 65.
    Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a Western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135CrossRefGoogle Scholar
  66. 66.
    Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV et al (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS ONE 9(4):e94297. doi: 10.1371/journal.pone.0094297 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Sensen CW, Melkonian M, Heimann K (1993) The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. Eur J Phycol 28:93–97CrossRefGoogle Scholar
  68. 68.
    Crosbie N, Pöckl M, Weiss T (2003) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Methods 55:361–370PubMedCrossRefGoogle Scholar
  69. 69.
    Surek B, Melkonian M (2004) CCAC - Culture Collection of Algae at the University of Cologne: a new collection of axenic algae with emphasis on flagellates. Nova Hedwigia 79:77–91CrossRefGoogle Scholar
  70. 70.
    Sieracki M, Poulton N, Crosbie N (2005) Automated isolation techniques for microalgae. In: Andersen RA (ed) Algal culturing techniques. Chapter 7. Elsevier, Amsterdam, pp 101–116Google Scholar
  71. 71.
    McIlroy, Smith, Geller (2014) FISH-flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium. Coral Reefs 33:157–167CrossRefGoogle Scholar
  72. 72.
    Medina M, Sachs JL (2010) Symbiont genomics, our new tangled bank. Genomics 95:129–137PubMedCrossRefGoogle Scholar
  73. 73.
    Chang SS, Prózelin BB, Trench RK (1983) Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar Biol 76:219–229CrossRefGoogle Scholar
  74. 74.
    Domotor SL, D'Elia CF (1984) Nutrient uptake kinetics and growth of zooxanthellae maintained in laboratory culture. Mar Biol 80:93–101CrossRefGoogle Scholar
  75. 75.
    Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579CrossRefGoogle Scholar
  76. 76.
    Warner ME, LaJeunesse TC, Robinson JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51(4):1887–1897CrossRefGoogle Scholar
  77. 77.
    Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31(2):473–485CrossRefGoogle Scholar
  78. 78.
    Grottoli G, Warner ME, Levasi SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, Matsui Y (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol. doi: 10.1111/gcb.12658 PubMedGoogle Scholar
  79. 79.
    Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263PubMedCrossRefGoogle Scholar
  80. 80.
    Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  81. 81.
    Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. PNAS 105(27):9256–9261PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5(5):e10437. doi: 10.1371/journal.pone.0010437 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Silva-Lima AW (2010) Symbiosis stability, pathogens and health of reef-building corals: insights on the ecology of the human body. Oecologia Australis 14(3):784–795CrossRefGoogle Scholar
  84. 84.
    Moura RL (2003) Brazilian reefs as priority areas for biodiversity conservation in the Atlantic Ocean. Proc Int Coral Reef Symp 10(2):917–920Google Scholar
  85. 85.
    Chan Y, Pochon X, Fisher M, Wagner D, Concepcion G, Kahng S, Toonen R, Gates RD (2009) Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67–100 m depths) coral Leptoseris. BMC Ecol 9:21PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Bongaerts P, Riginos C, Ridgway T, Sampayo E, Van Oppen M, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5:e10871PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Bongaerts P, Frade P, Ogier J, Hay K, van Bleijswijk J, Englebert N, Vermeij M, Bak R, Visser P, Hoegh-Guldberg O (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60m) on a Caribbean reef. BMC Evol Biol 13:205PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2:e386PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Santos RS, LaJeunesse TC (2006) Searchable database of Symbiodinium diversity - geographic and ecological diversity (SD2-GED). Auburn University, Auburn
  90. 90.
    Robertson DR, Karg F, Moura RL, Victor BC, Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol Phylogenet Evol 40:795–807PubMedCrossRefGoogle Scholar
  91. 91.
    LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53(4):305–319CrossRefGoogle Scholar
  92. 92.
    Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160PubMedCrossRefGoogle Scholar
  93. 93.
    Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912CrossRefGoogle Scholar
  94. 94.
    Krueger T, Gates RD (2012) Cultivating endosymbionts - host environmental mimics support the survival of Symbiodinium C15 ex hospite. J Exp Mar Biol Ecol 413:169–176CrossRefGoogle Scholar
  95. 95.
    Krug LA, Gherardi DFM, Stech JL, Leão ZMAN, Kikuchi RKP, Hruschka ER, Suggett DJ (2013) The construction of causal networks to estimate coral bleaching intensity. Environ Model Softw 42:157–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arthur W. Silva-Lima
    • 1
  • Juline M. Walter
    • 1
  • Gizele D. Garcia
    • 1
  • Naiara Ramires
    • 1
  • Glaucia Ank
    • 1
  • Pedro M. Meirelles
    • 1
  • Alberto F. Nobrega
    • 3
  • Inacio D. Siva-Neto
    • 4
  • Rodrigo L. Moura
    • 1
    • 2
  • Paulo S. Salomon
    • 1
    • 2
  • Cristiane C. Thompson
    • 1
  • Fabiano L. Thompson
    • 1
    • 2
  1. 1.Laboratório de Microbiologia, Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Sage/Coppe, Centro de Gestão Tecnológica–CT2, Rua Moniz de Aragão, no.360 - Bloco 2Ilha do Fundão - Cidade UniversitáriaRio de JaneiroBrazil
  3. 3.Instituto de Microbiologia Prof Paulo de GoesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Laboratório de Protistologia, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations