Advertisement

Microbial Ecology

, Volume 70, Issue 1, pp 255–265 | Cite as

Soil-Borne Microbiome: Linking Diversity to Function

  • Lucas W. Mendes
  • Siu M. Tsai
  • Acácio A. Navarrete
  • Mattias de Hollander
  • Johannes A. van Veen
  • Eiko E. Kuramae
Soil Microbiology

Abstract

Soil microorganisms are sensitive to environment disturbances, and such alterations have consequences on microbial diversity and functions. Our hypothesis is that alpha diversity of microbial communities and functional diversity decrease from undisturbed to disturbed soils, with consequences for functional redundancy in the soil ecosystem. To test this hypothesis, we used soil DNA shotgun metagenomics approach to assess the soil microbiome in a chronosequence of land-use from a native tropical forest, followed by deforestation and cultivation of soybean croplands and pasture in different seasons. Agriculture and pasture soils were among the most diverse and presented higher functional redundancy, which is important to maintain the ecosystem functioning after the forest conversion. On the other hand, the ecosystem equilibrium in forest is maintained based on a lower alpha diversity but higher abundance of microorganisms. Our results indicate that land-use change alters the structure and composition of microbial communities; however, ecosystem functionality is overcome by different strategies based on the abundance and diversity of the communities.

Keywords

Soil microbiome Microbial ecology Soil function redundancy Tropical rainforest Land-use change Shotgun metagenomics 

Notes

Acknowledgments

This study was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2010/20353-7, 2008/58114-3, 2011/51749-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Wageningen 1240/11-0), and Conselho Nacional de Desenvolvimento Científico (CNPq 485801/2011-6). Publication 5700 of the Netherlands Institute of Ecology (NIOO-KNAW).

Data Accessibility

Metagenome sequences available in MG-RAST server under the project “Amazon Soil Metagenome 2_Mendes” (Project ID 1519).

Author Contribution

LWM and SMT contributed equally to this work. LWM, SMT, JAV, and EEK have substantial contributions to conception and design of the study and interpretation of data. LWM and AAN collected the samples and obtained the data. LWM, MH, and EEK conducted bioinformatics and statistical analyses. LWM and EEK wrote the paper. All authors discussed the results and commented on the manuscript.

Supporting Information

Additional supporting information may be found in the online version of this article.

Supplementary material

248_2014_559_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2142 kb)

References

  1. 1.
    Allison ST, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Babujia LC, Hungria M, Franchini JC, Brookes PC (2010) Microbial biomass and activity at various soil depths in a Brazilian Oxisol after two decades of no-tillage and conventional tillage. Soil Biol Biochem 42:2174–2181CrossRefGoogle Scholar
  3. 3.
    Balvanera P, Pfisterer AB, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156PubMedCrossRefGoogle Scholar
  4. 4.
    Battistuzzi FU, Hedges SB (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 2:335–343CrossRefGoogle Scholar
  5. 5.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300Google Scholar
  6. 6.
    Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653PubMedCentralPubMedGoogle Scholar
  7. 7.
    Brody JR, Kern SE (2004) Sodium boric acid: Atriz-less, cooler conductive medium for DNA electrophoresis. Biotechnology 36:214–216Google Scholar
  8. 8.
    Brossi MJL, Mendes LW, Germano MG, Lima AB, Tsai S (2014) Assessment of bacterial bph gene in Amazonian Dark Earth and their adjacent soils. PLoS One 9:e99597PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Calegari A, Hargrove WL, Rheinheimer DDS et al (2008) Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: a model for sustainability. Agron J 100:1013–1019CrossRefGoogle Scholar
  11. 11.
    Cenciani K, Lambais MR, Cerri CC, Basilio de Azevedo LC, Feigl BJ (2009) Bacteria diversity and microbial biomass in forest, pasture and fallow in the southwestern Amazon Basin. Revista Brasileira de Ciência do Solo 33:907–916CrossRefGoogle Scholar
  12. 12.
    Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10PubMedCrossRefGoogle Scholar
  13. 13.
    Clark K, Gorley R (2006) PRIMER. Primer-E, Plymouth, UK, version 6Google Scholar
  14. 14.
    Connel JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310CrossRefGoogle Scholar
  15. 15.
    Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33:1143–1153CrossRefGoogle Scholar
  16. 16.
    FAO (2012) Food and Agriculture Organization of United Nations. Agriculture and consumer protection department. Conservation agriculture, http://www.fao.org/nr/cgrfa/cthemes/cgrfa-micro-organisms/en//
  17. 17.
    Fierer N, Ladau J, Clemente JC et al (2013) Reconstructing the microbial diversity and function of pre-agriculture tallgrass prairie soils in the United States. Science 342:621PubMedCrossRefGoogle Scholar
  18. 18.
    Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  20. 20.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Fisher WD (1958) On grouping for maximum homogeneity. J Am Stat Assoc 53:789–798CrossRefGoogle Scholar
  22. 22.
    Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation system in southern Brazil. Soil Tillage Res 92:18–29CrossRefGoogle Scholar
  23. 23.
    Germano MG, Cannavan FS, Mendes LW et al (2012) Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesq Agrop Brasileira 47:654–664CrossRefGoogle Scholar
  24. 24.
    Girvan MS, Campbell CD, Kilham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313PubMedCrossRefGoogle Scholar
  25. 25.
    Griffiths BS, Ritz K, Bardgett RD et al (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 2:279–294CrossRefGoogle Scholar
  26. 26.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:9Google Scholar
  27. 27.
    Jesus EC, Marsh TL, Tiedje JM, Moreira FMS (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011CrossRefGoogle Scholar
  28. 28.
    Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA (2012) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79:12–24PubMedCrossRefGoogle Scholar
  29. 29.
    Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity–ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5:e1083CrossRefGoogle Scholar
  30. 30.
    Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lauber CL, Knight R, Hamady M, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Maeder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697CrossRefGoogle Scholar
  33. 33.
    Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  34. 34.
    Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. doi: 10.1038/ismej.2014.17 Google Scholar
  35. 35.
    Meyer F, Paarman D, D’Souza M et al (2008) The Metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386CrossRefGoogle Scholar
  36. 36.
    Navarrete AA, Cannavan FS, Taketani RG, Tsai SM (2010) A molecular survey of the diversity of microbial communities in different Amazonian agricultural model systems. Diversity 2:787–809CrossRefGoogle Scholar
  37. 37.
    Navarrete AA, Taketani RG, Mendes LW, Cannavan FS, Moreira FMS, Tsai SM (2011) Land-use systems affects archaeal community structure and functional diversity in western Amazon soils. Revista Brasileira de Ciência do Solo 35:1527–1540Google Scholar
  38. 38.
    Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607–621PubMedCrossRefGoogle Scholar
  39. 39.
    Newcombe RG (1998) Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med 17:2635–2650PubMedCrossRefGoogle Scholar
  40. 40.
    Olden JD, Leroy Poff N, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24PubMedCrossRefGoogle Scholar
  41. 41.
    Pan Y, Cassman N, Hollander M, Mendes LW, Korevaar H, Geerts RHEM, van Veen JA, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol. doi: 10.1111/1574-6941.12384 Google Scholar
  42. 42.
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721PubMedCrossRefGoogle Scholar
  43. 43.
    Philippot L, Spor A, Hénault C et al (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    R Development Core Team (2007) R: A Language and Environment for Statistical Computing: Vienna, Austria. (http://www.R-project.org)
  45. 45.
    Rodrigues JLM, Pellizari VH, Mueller R et al (2012) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  47. 47.
    SEPLAN. Secretaria de Estado e Planejamento e Coordenação Geral (2001) Mapa de solos do Estado de Mato Grosso, Mato Grosso. Available at: www.seplan.mt.gov.br (last accessed in 25 July, 2011)
  48. 48.
    Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji P, Mirhoseyni AH (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agric Sci 2:106–115Google Scholar
  49. 49.
    Souza RC, Cantão ME, Vasconcelos ANT, Nogueira MA, Hungria M (2013) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation and succession. Appl Soil Ecol 72:49–61CrossRefGoogle Scholar
  50. 50.
    Taketani RG, Tsai SM (2010) The influence of different land uses on the structure of archaeal communities in Amazon anthrosols based on 16S rRNA and amoA genes. Microb Ecol 59:734–743PubMedCrossRefGoogle Scholar
  51. 51.
    Tardy V, Mathieu O, Lévêque J et al (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183PubMedCrossRefGoogle Scholar
  52. 52.
    Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  53. 53.
    Ventura M, Canchaya C, Tauch A et al (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1320054111 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Wittebolle L, Marzorati M, Clement L et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626PubMedCrossRefGoogle Scholar
  56. 56.
    Verkhovtseva N, Kubarev E, Mineev V (2007) Agrochemical agents in maintaining the structure of the soil microbial community. Russ Agric Sci 33:100–102CrossRefGoogle Scholar
  57. 57.
    de Vries FT, Thébault E, Liiri M et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296–14301PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H (2005) Diversity localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Yachi NH, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lucas W. Mendes
    • 1
    • 2
  • Siu M. Tsai
    • 1
  • Acácio A. Navarrete
    • 1
    • 2
  • Mattias de Hollander
    • 2
  • Johannes A. van Veen
    • 2
    • 3
  • Eiko E. Kuramae
    • 2
  1. 1.Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, CENAUniversity of Sao Paulo USPPiracicabaBrazil
  2. 2.Department of Microbial EcologyNetherlands Institute of Ecology NIOO-KNAWWageningenThe Netherlands
  3. 3.Institute of BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations