Advertisement

Microbial Ecology

, Volume 70, Issue 1, pp 231–243 | Cite as

Shifts in Soil Chemical Properties and Bacterial Communities Responding to Biotransformed Dry Olive Residue Used as Organic Amendment

  • José A. SilesEmail author
  • Tomas Cajthaml
  • Paola Hernández
  • Daniel Pérez-Mendoza
  • Inmaculada García-Romera
  • Inmaculada Sampedro
Soil Microbiology

Abstract

Dry olive residue (DOR) is a waste product derived from olive oil extraction and has been proposed as an organic amendment. However, it has been demonstrated that a pre-treatment, such as its transformation by saprophytic fungi, is required before DOR soil application. A greenhouse experiment was designed where 0 and 50 g kg−1 of raw DOR (DOR), Coriolopsis floccosa-transformed DOR (CORDOR) and Fusarium oxysporum-transformed DOR (FUSDOR) were added to soil. Analyses of the soil chemical properties as well as the structure and relative abundance of bacterial and actinobacterial communities were conducted after 0, 30 and 60 days following amendment. The different amendments produced a slight decrease in soil pH and significant increases in carbon fractions, C/N ratios, phenols and K, with these increases being more significant after DOR application. Quantitative PCR assays of the 16S rRNA gene and PLFA analyses showed that all amendments favoured bacterial growth at 30 and 60 days, although actinobacterial proliferation was more evident after CORDOR and FUSDOR application at 60 days. Bacterial and actinobacterial DGGE multivariate analyses showed that the amendments produced structural changes in both communities, especially after 60 days of amendment. PLFA data analysis identified changes in soil microbial communities according to the amendment considered, with FUSDOR and CORDOR being less disruptive than DOR. Finally, integrated analysis of all data monitored in the present study enabled us to conclude that the greatest impact on soil properties was caused by DOR at 30 days and that soil showed some degree of resilience after this time.

Keywords

“Alpeorujo” Bioremediation Biotransformation Mediterranean soil Olive wastes Soil microbial community 

Notes

Acknowledgments

This study has been funded by the Spanish Ministry of Science and Innovation (Project AGL2008–572) and by a grant from the Competence Center TE01020218 of the Czech Technology Agency. J.A. Siles, D. Pérez-Mendoza and I. Sampedro gratefully acknowledge assistance from the JAE program, which is co-financed by the Consejo Superior de Investigaciones Científicas (CSIC) and the European Social Fund.

Supplementary material

248_2014_552_MOESM1_ESM.pdf (81 kb)
ESM 1 (PDF 81 kb)

References

  1. 1.
    Justino CI, Pereira R, Freitas AC, Rocha-Santos TA, Panteleitchouk TS, Duarte AC (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology 21:615–629. doi: 10.1007/s10646-011-0806-y PubMedCrossRefGoogle Scholar
  2. 2.
    Tortosa G, Alburquerque JA, Ait-Baddi G, Cegarra J (2012) The production of commercial organic amendments and fertilisers by composting of two-phase olive mill waste (“alperujo”). J Clean Prod 26:48–55. doi: 10.1016/j.jclepro.2011.12.008 CrossRefGoogle Scholar
  3. 3.
    Alburquerque JA, Gonzalvez J, Garcia D, Cegarra J (2004) Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol 91:195–200. doi: 10.1016/S0960-8524(03)00177-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Roig A, Cayuela ML, Sanchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26:960–969. doi: 10.1016/j.wasman.2005.07.024 PubMedCrossRefGoogle Scholar
  5. 5.
    Alburquerque JA, Gonzalvez J, Tortosa G, Baddi GA, Cegarra J (2009) Evaluation of “alperujo” composting based on organic matter degradation, humification and compost quality. Biodegradation 20:257–270. doi: 10.1007/s10532-008-9218-y PubMedCrossRefGoogle Scholar
  6. 6.
    López-Piñeiro A, Albarran A, Nunes JM, Barreto C (2008) Short and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid mediterranean conditions. Bioresour Technol 99:7982–7987. doi: 10.1016/j.biortech.2008.03.051 PubMedCrossRefGoogle Scholar
  7. 7.
    Ntougias S, Bourtzis K, Tsiamis G (2013) The microbiology of olive mill wastes. BioMed Res Int 2013:784591. doi: 10.1155/2013/784591 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Barbera AC, Maucieri C, Cavallaro V, Ioppolo A, Spagna G (2013) Effects of spreading olive mill wastewater on soil properties and crops, a review. Agr Water Manag 119:43–53. doi: 10.1016/j.agwat.2012.12.009 CrossRefGoogle Scholar
  9. 9.
    López-Piñeiro A, Albarrán A, Rato Nunes JM, Peña D, Cabrera D (2011) Long-term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Till Res 114:175–182. doi: 10.1016/j.still.2011.05.002 CrossRefGoogle Scholar
  10. 10.
    Sampedro I, Marinari S, D’Annibale A, Grego S, Ocampo JA, García-Romera I (2007) Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi. Int Biodeter Biodegr 60:116–125. doi: 10.1016/j.ibiod.2007.02.001 CrossRefGoogle Scholar
  11. 11.
    Sampedro I, Giubilei M, Cajthaml T, Federici E, Federici F, Petruccioli M, D’Annibale A (2009) Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresour Technol 100:6098–6106. doi: 10.1016/j.biortech.2009.06.026 PubMedCrossRefGoogle Scholar
  12. 12.
    Sampedro I, Cajthaml T, Marinari S, Petruccioli M, Grego S, D’Annibale A (2009) Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus. Process Biochem 44:216–225. doi: 10.1016/j.procbio.2008.10.016 CrossRefGoogle Scholar
  13. 13.
    Toscano P, Casacchia T, Diacono M, Montemurro F (2013) Composted olive mill by-products: compost characterization and application on olive orchards. J Agric Sci Technol 15:627–638Google Scholar
  14. 14.
    Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209. doi: 10.1002/ldr.696 CrossRefGoogle Scholar
  15. 15.
    Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos T Roy Soc B 363:685–701. doi: 10.1098/rstb.2007.2178 CrossRefGoogle Scholar
  16. 16.
    Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecol 64:450–460. doi: 10.1007/s00248-012-0025-y CrossRefGoogle Scholar
  17. 17.
    Nautiyal CS, Chauhan PS, Bhatia CR (2010) Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil Till Res 109:55–60. doi: 10.1016/j.still.2010.04.008 CrossRefGoogle Scholar
  18. 18.
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. doi: 10.1128/AEM. 72.3.1719-1728.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Karpouzas DG, Ntougias S, Iskidou E, Rousidou C, Papadopoulou KK, Zervakis GI, Ehaliotis C (2010) Olive mill wastewater affects the structure of soil bacterial communities. Appl Soil Eco 45:101–111. doi: 10.1016/j.apsoil.2010.03.002 CrossRefGoogle Scholar
  20. 20.
    Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils 45:115–131. doi: 10.1007/s00374-008-0334-y CrossRefGoogle Scholar
  21. 21.
    USDA-NRCS (1996) Soil survey laboratory methods manual. Soil Survey Investigations Report N. 42, Version 3.0. USDA, Washington, DCGoogle Scholar
  22. 22.
    Cayuela ML, Millner PD, Meyer SL, Roig A (2008) Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes. Sci Total Environ 399:11–18. doi: 10.1016/j.scitotenv.2008.03.031 PubMedCrossRefGoogle Scholar
  23. 23.
    Sampedro I, Aranda E, Martín J, García-Garrido JM, García-Romera I, Ocampo JA (2004) Saprobic fungi decrease plant toxicity caused by olive mill residues. Appl Soil Ecol 26:149–156. doi: 10.1016/j.apsoil.2003.10.011 CrossRefGoogle Scholar
  24. 24.
    Mingorance MD, Barahona E, Fernández-Gálvez J (2007) Guidelines for improving organic carbon recovery by the wet oxidation method. Chemosphere 68:409–413. doi: 10.1016/j.chemosphere.2007.01.021 PubMedCrossRefGoogle Scholar
  25. 25.
    Brozzoli V, Crognale S, Sampedro I, Federici F, D’Annibale A, Petruccioli M (2009) Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresour Technol 100:3395–3402. doi: 10.1016/j.biortech.2009.02.022 PubMedCrossRefGoogle Scholar
  26. 26.
    Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P (2008) Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb Tech 43:186–192. doi: 10.1016/j.enzmictec.2007.11.008 CrossRefGoogle Scholar
  27. 27.
    Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120. doi: 10.1128/AEM. 71.7.4117-4120.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Yun JJ, Heisler LE, Hwang II, Wilkins O, Lau SK, Hyrcza M, Jayabalasingham B, Jin J, McLaurin J, Tsao MS, Der SD (2006) Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Res 34:e85. doi: 10.1093/nar/gkl400 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Vetrovsky T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. doi: 10.1371/journal.pone.0057923 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. Appl Environ Microbiol 74:2717–2727. doi: 10.1128/AEM. 02195-07 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Xu ZY, Huang J, Fan CZ (2011) Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR. Bioresour Technol 102:1383–1388. doi: 10.1016/j.biortech.2010.09.034 PubMedCrossRefGoogle Scholar
  32. 32.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917. doi: 10.1139/o59-099 CrossRefGoogle Scholar
  33. 33.
    Tornberg K, Bååth E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fert Soils 37:190–197. doi: 10.1007/s00374-002-0574-1 Google Scholar
  34. 34.
    Moore-Kucera J, Dick RP (2008) PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microbial Ecol 55:500–511. doi: 10.1007/s00248-007-9295-1 CrossRefGoogle Scholar
  35. 35.
    Lv X-C, Weng X, Zhang W, Rao P-F, Ni L (2012) Microbial diversity of traditional fermentation starters for Hong Qu glutinous rice wine as determined by PCR-mediated DGGE. Food Control 28:426–434. doi: 10.1016/j.foodcont.2012.05.025 CrossRefGoogle Scholar
  36. 36.
    Magurran A (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  37. 37.
    Saparrat MCN, Balatti PA, Arambarri AM, Martínez MJ (2014) Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biot 41:607–617. doi: 10.1007/s10295-014-1408-5 CrossRefGoogle Scholar
  38. 38.
    Sampedro I, D’Annibale A, Ocampo JA, Stazi SR, García-Romera I (2007) Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity. Bioresour Technol 98:3547–3554. doi: 10.1016/j.biortech.2006.11.015 PubMedCrossRefGoogle Scholar
  39. 39.
    Aranda E, Sampedro I, Ocampo JA, García-Romera I (2006) Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth. Int Biodeter Biodegr 58:176–179. doi: 10.1016/j.ibiod.2006.06.006 CrossRefGoogle Scholar
  40. 40.
    Hulzebos EM, Adema DMM, Dirven-van Breemen EM, Henzen L, van Gestel CAM (1991) QSARs in phytotoxicity. Sci Total Environ 109–110:493–497. doi: 10.1016/0048-9697(91)90203-Q CrossRefGoogle Scholar
  41. 41.
    Reina R, Liers C, Ocampo JA, García-Romera I, Aranda E (2013) Solid state fermentation of olive mill residues by wood- and dung-dwelling Agaricomycetes: effects on peroxidase production, biomass development and phenol phytotoxicity. Chemosphere 93:1406–1412. doi: 10.1016/j.chemosphere.2013.07.006 PubMedCrossRefGoogle Scholar
  42. 42.
    Sayadi S, Allouche N, Jaoua M, Aloui F (2000) Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem 35:725–773. doi: 10.1016/S0032-9592(99)00134-X CrossRefGoogle Scholar
  43. 43.
    Paredes C, Roig A, Bernal MP, Sánchez-Monedero MA, Cegarra J (2000) Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fert Soils 32:222–227. doi: 10.1007/s003740000239 CrossRefGoogle Scholar
  44. 44.
    Jarboui R, Sellami F, Azri C, Gharsallah N, Ammar E (2010) Olive mill wastewater evaporation management using PCA method: case study of natural degradation in stabilization ponds (Sfax, Tunisia). J Hard Mater 176:992–1005. doi: 10.1016/j.jhazmat.2009.11.140 CrossRefGoogle Scholar
  45. 45.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. doi: 10.1073/pnas.0507535103 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol Biochem 38:600–610. doi: 10.1016/j.soilbio.2005.06.012 CrossRefGoogle Scholar
  47. 47.
    Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biot 82:25–39. doi: 10.1007/s00253-008-1801-y CrossRefGoogle Scholar
  48. 48.
    Lozano-García B, Parras-Alcántara L (2013) Short-term effects of olive mill by-products on soil organic carbon, total N, C:N ratio and stratification ratios in a Mediterranean olive grove. Agr Ecosyst Environ 165:68–73. doi: 10.1016/j.agee.2012.12.007 CrossRefGoogle Scholar
  49. 49.
    Mekki A, Dhouib A, Sayadi S (2006) Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol Res 161:93–101. doi: 10.1016/j.micres.2005.06.001 PubMedCrossRefGoogle Scholar
  50. 50.
    Mechri B, Echbili A, Issaoui M, Braham M, Elhadj SB, Hammami M (2007) Short-term effects in soil microbial community following agronomic application of olive mill wastewaters in a field of olive trees. Appl Soil Ecol 36:216–223. doi: 10.1016/j.apsoil.2007.03.005 CrossRefGoogle Scholar
  51. 51.
    Sierra J, Marti E, Garau MA, Cruanas R (2007) Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci Total Environ 378:90–94. doi: 10.1016/j.scitotenv.2007.01.009 PubMedCrossRefGoogle Scholar
  52. 52.
    Di Serio MG, Lanza B, Mucciarella MR, Russi F, Iannucci E, Marfisi P, Madeo A (2008) Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int Biodeter Biodegr 62:403–407. doi: 10.1016/j.ibiod.2008.03.006 CrossRefGoogle Scholar
  53. 53.
    Mekki A, Dhouib A, Sayadi S (2009) Evolution of several soil properties following amendment with olive mill wastewater. Prog Nat Sci 19:1515–1521. doi: 10.1016/j.pnsc.2009.04.014 CrossRefGoogle Scholar
  54. 54.
    Karpouzas DG, Rousidou C, Papadopoulou KK, Bekris F, Zervakis GI, Singh BK, Ehaliotis C (2009) Effect of continuous olive mill wastewater applications, in the presence and absence of nitrogen fertilization, on the structure of rhizosphere-soil fungal communities. FEMS Microbiol Ecol 70:388–401. doi: 10.1111/j.1574-6941.2009.00779.x PubMedCrossRefGoogle Scholar
  55. 55.
    Rousidou C, Papadopoulou K, Zervakis G, Singh BK, Ehaliotis C, Karpouzas DG (2010) Repeated application of diluted olive mill wastewater induces changes in the structure of the soil microbial community. Eur J Soil Biol 46:34–40. doi: 10.1016/j.ejsobi.2009.10.004 CrossRefGoogle Scholar
  56. 56.
    Magdich S, Jarboui R, Rouina BB, Boukhris M, Ammar E (2012) A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts. Sci Total Environ 430:209–216. doi: 10.1016/j.scitotenv.2012.05.004 PubMedCrossRefGoogle Scholar
  57. 57.
    Di Bene C, Pellegrino E, Debolini M, Silvestri N, Bonari E (2013) Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol Biochem 56:21–30. doi: 10.1016/j.soilbio.2012.02.019 CrossRefGoogle Scholar
  58. 58.
    Montemurro F, Convertini G, Ferri D (2004) Mill wastewater and olive pomace compost as amendments for rye-grass. Agronomie 24:481–486. doi: 10.1051/agro:2004044 CrossRefGoogle Scholar
  59. 59.
    López-Piñeiro A, Albarrán A, Rato Nunes JM, Peña D, Cabrera D (2011) Cumulative and residual effects of two-phase olive mill waste on olive grove production and soil properties. Soil Sci Soc Am J 75:1061–1069. doi: 10.2136/sssaj2010.0230 CrossRefGoogle Scholar
  60. 60.
    Siles JA, Pascual J, González-Menéndez V, Sampedro I, García-Romera I, Bills GF (2014) Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue. Syst Appl Microbiol 37:113–120. doi: 10.1016/j.syapm.2013.08.005 PubMedCrossRefGoogle Scholar
  61. 61.
    Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecol 35:265–278. doi: 10.1007/s002489900082 CrossRefGoogle Scholar
  62. 62.
    Wixon DL, Balser TC (2013) Toward conceptual clarity: PLFA in warmed soils. Soil Biol Biochem 57:769–774. doi: 10.1016/j.soilbio.2012.08.016 CrossRefGoogle Scholar
  63. 63.
    Drenovsky RE, Feris KP, Batten KM, Hristova K (2008) New and current microbiological tools for ecosystem ecologists: towards a goal of linking structure and function. Amer Midl Nat 160:140–159. doi: 10.1674/0003-0031(2008)160[140:NACMTF]2.0.CO;2 CrossRefGoogle Scholar
  64. 64.
    Kotsou M, Mari I, Lasaridi K, Chatzipavlidis I, Balis C, Kyriacou A (2004) The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Appl Soil Ecol 26:113–121. doi: 10.1016/j.apsoil.2003.12.001 CrossRefGoogle Scholar
  65. 65.
    Bach EM, Baer SG, Meyer CK, Six J (2010) Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem 42(12):2182–2191. doi: 10.1016/j.soilbio.2010.08.014 CrossRefGoogle Scholar
  66. 66.
    Medina E, Romero C, de Los SB, de Castro A, Garcia A, Romero F, Brenes M (2011) Antimicrobial activity of olive solutions from stored Alpeorujo against plant pathogenic microorganisms. J Agr Food Chem 59:6927–6932. doi: 10.1021/jf2010386 CrossRefGoogle Scholar
  67. 67.
    Montecchia MS, Correa OS, Soria MA, Frey SD, García AF, Garland JL (2011) Multivariate approach to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina. Appl Soil Ecol 47:176–183. doi: 10.1016/j.apsoil.2010.12.008 CrossRefGoogle Scholar
  68. 68.
    Bontemps C, Toussaint M, Revol PV, Hotel L, Jeanbille M, Uroz S, Turpault MP, Blaudez D, Leblond P (2013) Taxonomic and functional diversity of Streptomyces in a forest soil. FEMS Microbiol Lett 342:157–167. doi: 10.1111/1574-6968.12126 PubMedCrossRefGoogle Scholar
  69. 69.
    Tella M, Doelsch E, Letourmy P, Chataing S, Cuoq F, Bravin MN, Saint Macary H (2013) Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops. Waste Manag 33:184–192. doi: 10.1016/j.wasman.2012.07.021 PubMedCrossRefGoogle Scholar
  70. 70.
    Larney FJ, Angers DA (2012) The role of organic amendments in soil reclamation: a review. Can J Soil Sci 92:19–38. doi: 10.4141/cjss2010-064 CrossRefGoogle Scholar
  71. 71.
    Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289. doi: 10.1590/S0103-90162013000400009 CrossRefGoogle Scholar
  72. 72.
    Piotrowska A, Rao MA, Scotti R, Gianfreda L (2011) Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161:8–17. doi: 10.1016/j.geoderma.2010.11.011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • José A. Siles
    • 1
    Email author
  • Tomas Cajthaml
    • 2
    • 3
  • Paola Hernández
    • 1
    • 4
  • Daniel Pérez-Mendoza
    • 1
  • Inmaculada García-Romera
    • 1
  • Inmaculada Sampedro
    • 1
    • 5
  1. 1.Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  3. 3.Institute for Environmental Studies, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  4. 4.Department of Microbiology, Unidad de Investigaciones Agropecuarias (UNIDIA)Pontificia Universidad JaverianaBogotáColombia
  5. 5.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations