Advertisement

Microbial Ecology

, Volume 70, Issue 1, pp 118–131 | Cite as

Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

  • Graciela Gonzalez-Gil
  • Rachid Sougrat
  • Ali R. Behzad
  • Piet N.L. Lens
  • Pascal E. Saikaly
Environmental Microbiology

Abstract

Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

Keywords

Anammox Autotrophic denitrification Heterotrophic denitrification Polygon-shaped bacteria Granules Microbial aggregates Granular sludge Pyrosequencing 

Notes

Acknowledgments

This work was supported by a Global Research Partnership–Collaborative Fellows Award (GRP-CF-2011-13-P) and discretionary investigator funds (P.E.S.) from King Abdullah University of Science and Technology. Special thanks are extended to Mohammed Alarawi and Siva Kumar Neelamegam at the Biosciences Core Laboratory at KAUST for generation of pyrosequencing and metagenomics reads, respectively, and to Krishna Katuri for providing M. barkeri and G. sulfurreducens cultures and Samik Bagchi for providing the nitrogen removal rate of the anammox granules.

Supplementary material

248_2014_546_MOESM1_ESM.docx (11.3 mb)
ESM 1 (DOCX 11553 kb)

References

  1. 1.
    Kalvelage T, Lavik G, Lam P, Contreras S, Arteaga L, Loscher CR et al (2013) Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat Geosci 6:228–234CrossRefGoogle Scholar
  2. 2.
    Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J, Geerts W et al (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130PubMedCrossRefGoogle Scholar
  3. 3.
    Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326PubMedCrossRefGoogle Scholar
  4. 4.
    Kuai L, Verstraete W (1998) Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl Environ Microbiol 64:4500–4506PubMedCentralPubMedGoogle Scholar
  5. 5.
    Volcke EIP, Van Hulle SWH, Donckels BMR, van Loosdrecht MCM, Vanrolleghem PA (2005) Coupling the SHARON process with anammox: model-based scenario analysis with focus on operating costs. Water Sci Technol 52(4):107–115PubMedGoogle Scholar
  6. 6.
    Kartal B, Kuenen JG, van Loosdrecht MCM (2010) Sewage treatment with anammox. Science 328:702–703PubMedCrossRefGoogle Scholar
  7. 7.
    Liu X-W, Sheng G-P, Yu H-Q (2009) Physicochemical characteristics of microbial granules. Biotechnol Adv 27:1061–1070PubMedCrossRefGoogle Scholar
  8. 8.
    de Graaff MS, Temmink H, Zeeman G, van Loosdrecht MCM, Buisman CJN (2011) Autotrophic nitrogen removal from black water: calcium addition as a requirement for settleability. Water Res 45:63–74PubMedCrossRefGoogle Scholar
  9. 9.
    van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294PubMedCrossRefGoogle Scholar
  10. 10.
    Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41:1623–1634PubMedCrossRefGoogle Scholar
  11. 11.
    Quan Z-X, Rhee S-K, Zuo J-E, Yang Y, Bae J-W, Park JR et al (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139PubMedCrossRefGoogle Scholar
  12. 12.
    B-l H, Zheng P, C-j T, J-w C, van der Biezen E, Zhang L et al (2010) Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44:5014–5020CrossRefGoogle Scholar
  13. 13.
    Lackner S, Terada A, Smets BF (2008) Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res 42:1102–1112PubMedCrossRefGoogle Scholar
  14. 14.
    Ni B-J, Ruscalleda M, Smets BF (2012) Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm. Water Res 46:4645–4652PubMedCrossRefGoogle Scholar
  15. 15.
    Kampschreur MJ, van der Star WRL, Wielders HA, Mulder JW, Jetten MSM, van Loosdrecht MCM (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res 42:812–826PubMedCrossRefGoogle Scholar
  16. 16.
    van der Star WRL, Abma WR, Blommers D, Mulder J-W, Tokutomi T, Strous M et al (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163PubMedCrossRefGoogle Scholar
  17. 17.
    Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez-Gil G, Lens PNL, Van Aelst A, Van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microbiol 67:3683–3692PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  22. 22.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386CrossRefGoogle Scholar
  25. 25.
    Wilke A, Harrison T, Wilkening J, Field D, Glass E, Kyrpides N et al (2012) The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinforma 13:141CrossRefGoogle Scholar
  26. 26.
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M et al (2005) The Subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721PubMedCrossRefGoogle Scholar
  28. 28.
    Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the high Arctic. Appl Environ Microbiol 78:549–559PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ni B-J, Hu B-L, Fang F, Xie W-M, Kartal B, Liu X-W et al (2010) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 76:2652–2656PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lin YM, Lotti T, Sharma PK, van Loosdrecht MCM (2013) Apatite accumulation enhances the mechanical property of anammox granules. Water Res 47:4556–4566PubMedCrossRefGoogle Scholar
  31. 31.
    Tang C-J, Zheng P, Wang C-H, Mahmood Q, Zhang J-Q, Chen X-G et al (2011) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45:135–144PubMedCrossRefGoogle Scholar
  32. 32.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA et al (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J Bacteriol 190:708–717PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J (2007) The effect of biogeochemical processes on pH. Mar Chem 105:30–51CrossRefGoogle Scholar
  34. 34.
    van Langerak EPA, Gonzalez-Gil G, van Aelst A, van Lier JB, Hamelers HVM, Lettinga G (1998) Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Res 32:1255–1263CrossRefGoogle Scholar
  35. 35.
    Yu HQ, Tay JH, Fang HHP (2001) The roles of calcium in sludge granulation during UASB reactor start-up. Water Res 35:1052–1060PubMedCrossRefGoogle Scholar
  36. 36.
    Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R, Field JA (2013) Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 91:22–27PubMedCrossRefGoogle Scholar
  37. 37.
    Wu ML, van Teeseling MCF, Willems MJR, van Donselaar EG, Klingl A, Rachel R et al (2012) Ultrastructure of the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”, a novel polygon-shaped bacterium. J Bacteriol 194:284–291PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lindsay MR, Webb RI, Hosmer HM, Fuerst JA (1995) Effects of fixative and buffer on morphology and ultrastructure of a freshwater planctomycete, Gemmata obscuriglobus. J Microbiol Methods 21:45–54CrossRefGoogle Scholar
  39. 39.
    van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196CrossRefGoogle Scholar
  40. 40.
    Hu Z, Speth DR, Francoijs K-J, Quan Z-X, Jetten M (2012) Metagenome analysis of a complex community reveals the metabolic blueprint of anammox bacterium ‘Candidatus Jettenia asiatica’. Front Microbiol 3Google Scholar
  41. 41.
    Han P, Gu J-D (2013) A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl Microbiol Biotechnol 97:10155–10162PubMedCrossRefGoogle Scholar
  42. 42.
    Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg JLCM, Schmid MC, Sinninghe Damsté J et al (2008) Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol Ecol 63:46–55PubMedCrossRefGoogle Scholar
  43. 43.
    Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, K-i S (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60:1376–1382PubMedCrossRefGoogle Scholar
  44. 44.
    Lu Y, Slater F, Bello-Mendoza R, Batstone DJ (2013) Shearing of biofilms enables selective layer based microbial sampling and analysis. Biotechnol Bioeng 110:2600–2605PubMedCrossRefGoogle Scholar
  45. 45.
    Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC et al (2003) A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076PubMedCrossRefGoogle Scholar
  46. 46.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M et al (2009) Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Ginige MP, Keller J, Blackall LL (2005) Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Microbiol 71:8683–8691PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Trimmer M, Nicholls JC, Morley N, Davies CA, Aldridge J (2005) Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment. Appl Environ Microbiol 71:1923–1930PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS et al (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77:8234–8240PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Yoon S, Sanford RA, Löffler FE (2013) Shewanella spp. use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction. Appl Environ Microbiol 79:2818–2822PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15:1882–1899PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Lu H, Kalyuzhnaya M, Chandran K (2012) Comparative proteomic analysis reveals insights into anoxic growth of Methyloversatilis universalis FAM5 on methanol and ethanol. Environ Microbiol 14:2935–2945PubMedCrossRefGoogle Scholar
  53. 53.
    Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microb Biotechnol 4:585–602PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP et al (2013) Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS ONE 8:e59927PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218PubMedCrossRefGoogle Scholar
  56. 56.
    Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Zinder SH, Elias AF (1985) Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. J Bacteriol 163:317–323PubMedCentralPubMedGoogle Scholar
  58. 58.
    Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6:1094–1106PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Tetu SG, Breakwell K, Elbourne LDH, Holmes AJ, Gillings MR, Paulsen IT (2013) Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J 7:1227–1236PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K et al (2007) Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl Environ Microbiol 73:1065–1072PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163PubMedCrossRefGoogle Scholar
  62. 62.
    LaPara TM, Nakatsu CH, Pantea LM, Alleman JE (2002) Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res 36:638–646PubMedCrossRefGoogle Scholar
  63. 63.
    Smith NR, Yu Z, Mohn WW (2003) Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Res 37:4873–4884PubMedCrossRefGoogle Scholar
  64. 64.
    Wells GF, Park H-D, Eggleston B, Francis CA, Criddle CS (2011) Fine-scale bacterial community dynamics and the taxa–time relationship within a full-scale activated sludge bioreactor. Water Res 45:5476–5488PubMedCrossRefGoogle Scholar
  65. 65.
    Werker AG (2006) An evaluation of full-scale activated sludge dynamics using microbial fatty acid analysis. Water Sci Technol 54:11–19PubMedCrossRefGoogle Scholar
  66. 66.
    Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78:7042–7047PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Lu L, Xing D, Ren N (2012) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46:2425–2434PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang T, Shao M-F, Ye L (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–1147PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Water Desalination and Reuse Center, Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.UNESCO–IHEDelftThe Netherlands
  3. 3.Advanced Nanofabrication Imaging and CharacterizationKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations