Microbial Ecology

, Volume 69, Issue 2, pp 422–433 | Cite as

Stability and Resilience of Oral Microcosms Toward Acidification and Candida Outgrowth by Arginine Supplementation

  • Jessica E. KoopmanEmail author
  • Wilfred F. M. Röling
  • Mark J. Buijs
  • Christopher H. Sissons
  • Jacob M. ten Cate
  • Bart J. F. Keijser
  • Wim Crielaard
  • Egija Zaura
Host Microbe Interactions


Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque “artificial mouth” (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic.


Arginine Candida Oral Ecology Microcosm 



We are grateful to Dr. Lisa Wong for her advice on operating MAM. We like to thank Dr. Bernd Brandt for his advice on bioinformatics, Elly van Deutekom-Mulder, Joyce van der Horst, and Marta ter Haar for technical support. We are very grateful to our saliva donor.

Supplementary material

248_2014_535_Fig9_ESM.gif (168 kb)
Fig. S1

(GIF 168 kb)

248_2014_535_MOESM1_ESM.tif (384 kb)
High Resolution Image (TIFF 383 kb)
248_2014_535_Fig10_ESM.gif (616 kb)
Fig. S2

(GIF 615 kb)

248_2014_535_MOESM2_ESM.tif (2.4 mb)
High Resolution Image (TIFF 2416 kb)
248_2014_535_Fig11_ESM.gif (13 kb)
Fig. S3

(GIF 12 kb)

248_2014_535_MOESM3_ESM.tif (15 kb)
High Resolution Image (TIFF 15 kb)
248_2014_535_Fig12_ESM.gif (124 kb)
Fig. S4

(GIF 123 kb)

248_2014_535_MOESM4_ESM.tif (186 kb)
High Resolution Image (TIFF 185 kb)
248_2014_535_MOESM5_ESM.pdf (85 kb)
Table S1 (PDF 84 kb)


  1. 1.
    Wade WG (2013) The oral microbiome in health and disease Pharmacological research. J Ital Pharmacoll Soc 69:137–143. doi: 10.1016/j.phrs.2012.11.006 Google Scholar
  2. 2.
    WHO (2012) World Health Organization: Oral health fact sheet N°318. In: Centre, M (ed.).Google Scholar
  3. 3.
    Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271PubMedGoogle Scholar
  4. 4.
    Van Wuyckhuyse BC, Perinpanayagam HE, Bevacqua D, Raubertas RF, Billings RJ, Bowen WH, Tabak LA (1995) Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J Dent Res 74:686–690PubMedCrossRefGoogle Scholar
  5. 5.
    Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168. doi: 10.1007/s00726-008-0210-y PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sharif MO, Iram S, Brunton PA (2013) Effectiveness of arginine-containing toothpastes in treating dentine hypersensitivity: a systematic review. J Dent 41:483–492. doi: 10.1016/j.jdent.2013.01.009
  7. 7.
    Burne RA, Zeng L, Ahn SJ, Palmer SR, Liu Y, Lefebure T, Stanhope MJ, Nascimento MM (2012) Progress dissecting the oral microbiome in caries and health. Adv Dent Res 24:77–80. doi: 10.1177/0022034512449462 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Casiano-Colon A, Marquis RE (1988) Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol 54:1318–1324PubMedCentralPubMedGoogle Scholar
  9. 9.
    Nascimento MM, Gordan VV, Garvan CW, Browngardt CM, Burne RA (2009) Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 24:89–95. doi: 10.1111/j.1399-302X.2008.00477.x PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nascimento MM, Liu Y, Kalra R, Perry S, Adewumi A, Xu X, Primosch RE, Burne RA (2013) Oral arginine metabolism may decrease the risk for dental caries in children. J Dent Res 92:604–608. doi: 10.1177/0022034513487907 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL, Petro TM, Nickerson KW (2009) Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 77:1596–1605. doi: 10.1128/IAI. 01452-08 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot cell 2:1053–1060PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tang G, Yip HK, Cutress TW, Samaranayake LP (2003) Artificial mouth model systems and their contribution to caries research: a review. J Dent 31:161–171PubMedCrossRefGoogle Scholar
  14. 14.
    Exterkate RA, Crielaard W, Ten Cate JM (2010) Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res 44:372–379. doi: 10.1159/000316541 PubMedCrossRefGoogle Scholar
  15. 15.
    Guggenheim B, Guggenheim M, Gmur R, Giertsen E, Thurnheer T (2004) Application of the Zurich biofilm model to problems of cariology. Caries Res 38:212–222. doi: 10.1159/000077757 PubMedCrossRefGoogle Scholar
  16. 16.
    Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS (2013) An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome 1:25. doi: 10.1186/2049-2618-1-25 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sissons CH, Cutress TW, Hoffman MP, Wakefield JS (1991) A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res 70:1409–1416PubMedCrossRefGoogle Scholar
  18. 18.
    Wong L, Sissons CH, Cutress TW (1994) Control of a multiple dental plaque culture system and long-term, continuous, plaque pH measurement using LabView (R). Binary-Comput Microb 6:173–180Google Scholar
  19. 19.
    Sissons CH, Cutress TW, Faulds G, Wong L (1992) pH responses to sucrose and the formation of pH gradients in thick 'artificial mouth' microcosm plaques. Arch Oral Biol 37:913–922PubMedCrossRefGoogle Scholar
  20. 20.
    Wong L, Sissons C (2001) A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. Arch Oral Biol 46:477–486PubMedCrossRefGoogle Scholar
  21. 21.
    Kraneveld EA, Buijs MJ, Bonder MJ, Visser M, Keijser BJ, Crielaard W, Zaura E (2012) The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS One 7:e42770. doi: 10.1371/journal.pone.0042770 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J comput biol : J comput mol cell biol 7:203–214. doi: 10.1089/10665270050081478 CrossRefGoogle Scholar
  24. 24.
    Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schaffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24:1757–1764. doi: 10.1093/bioinformatics/btn322 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gerardu VA, Buijs MJ, ten Cate JM, van Loveren C (2003) The effect of a single application of 40 % chlorhexidine varnish on the numbers of salivary mutans streptococci and acidogenicity of dental plaque. Caries research 37: 369–373. doi: 72170Google Scholar
  26. 26.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  27. 27.
    Hoogenkamp MA, ten Cate JM (2014) Determination of arginine catabolism by salivary pellet. MethodsX 1:1–5. doi: 10.1016/j.mex.2014.01.001
  28. 28.
    Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  29. 29.
    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  30. 30.
    ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi: 10.2307/1938672 CrossRefGoogle Scholar
  31. 31.
    Boersma JG, van der Veen MH, Lagerweij MD, Bokhout B, Prahl-Andersen B (2005) Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res 39:41–47. doi: 10.1159/000081655 PubMedCrossRefGoogle Scholar
  32. 32.
    Huang X, Exterkate RA, ten Cate JM (2012) Factors associated with alkali production from arginine in dental biofilms. J Dent Res 91:1130–1134. doi: 10.1177/0022034512461652 PubMedCrossRefGoogle Scholar
  33. 33.
    Pham LC, van Spanning RJ, Roling WF, Prosperi AC, Terefework Z, Ten Cate JM, Crielaard W, Zaura E (2009) Effects of probiotic Lactobacillus salivarius W24 on the compositional stability of oral microbial communities. Arch Oral Biol 54:132–137. doi: 10.1016/j.archoralbio.2008.09.007 PubMedCrossRefGoogle Scholar
  34. 34.
    Shah HN, Collins DM (1990) Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40:205–208PubMedCrossRefGoogle Scholar
  35. 35.
    Tian Y, He X, Torralba M, Yooseph S, Nelson KE, Lux R, McLean JS, Yu G, Shi W (2010) Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol oral microbiol 25:357–367. doi: 10.1111/j.2041-1014.2010.00585.x PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sissons CH, Anderson SA, Wong L, Coleman MJ, White DC (2007) Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments. Caries Res 41:413–422. doi: 10.1159/000104801 PubMedCrossRefGoogle Scholar
  37. 37.
    Marsh PD, Moter A (2000) Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontology 55:16–35. doi: 10.1111/j.1600-0757.2009.00339.x CrossRefGoogle Scholar
  38. 38.
    Jiang W, Ling Z, Lin X, Chen Y, Zhang J, Yu J, Xiang C, Chen H (2014) Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood. Microb Ecol 67:962–969. doi: 10.1007/s00248-014-0372-y PubMedCrossRefGoogle Scholar
  39. 39.
    Kianoush N, Adler CJ, Nguyen KA, Browne GV, Simonian M, Hunter N (2014) Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One 9:e92940. doi: 10.1371/journal.pone.0092940 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kumar PS, Griffen AL, Moeschberger ML, Leys EJ (2005) Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 43:3944–3955. doi: 10.1128/JCM. 43.8.3944-3955.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Sissons CH, Cutress TW (1988) pH changes during simultaneous metabolism of urea and carbohydrate by human salivary bacteria in vitro. Arch Oral Biol 33:579–587PubMedCrossRefGoogle Scholar
  42. 42.
    Kleinberg I (1967) Effect of urea concentration on human plaque pH levels in situ. Arch Oral Biol 12:1475–1484PubMedCrossRefGoogle Scholar
  43. 43.
    Curran TM, Lieou J, Marquis RE (1995) Arginine deiminase system and acid adaptation of oral streptococci. Appl Environ Microbiol 61:4494–4496PubMedCentralPubMedGoogle Scholar
  44. 44.
    ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot PW (2009) Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88:105–115. doi: 10.1177/0022034508329273 PubMedCrossRefGoogle Scholar
  45. 45.
    Torres SR, Garzino-Demo A, Meiller TF, Meeks V, Jabra-Rizk MA (2009) Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52:11–15. doi: 10.1111/j.1439-0507.2008.01602.x PubMedCrossRefGoogle Scholar
  46. 46.
    Naglik JR, Moyes DL, Wachtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes and infection / Institut Pasteur 13:963–976. doi: 10.1016/j.micinf.2011.06.009 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Khan SA, Fidel PL, Jr., Thunayyan AA, Varlotta S, Meiller TF, Jabra-Rizk MA (2013) Impaired Histatin-5 Levels and Salivary Antimicrobial Activity against in HIV Infected Individuals. J AIDS Clin Res 4. doi:  10.4172/2155-6113.1000193
  48. 48.
    Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8. doi: 10.1111/j.1574-6968.2009.01668.x PubMedCrossRefGoogle Scholar
  49. 49.
    Thein ZM, Seneviratne CJ, Samaranayake YH, Samaranayake LP (2009) Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses 52:467–475. doi: 10.1111/j.1439-0507.2009.01719.x PubMedCrossRefGoogle Scholar
  50. 50.
    Bamford CV, D'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704. doi: 10.1128/IAI.00438-09 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370. doi: 10.1016/j.mib.2009.05.006 PubMedCrossRefGoogle Scholar
  52. 52.
    Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio 2: e00055-00011. doi:  10.1128/mBio.00055-11
  53. 53.
    Jakubovics NS, Kolenbrander PE (2010) The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 16:729–739. doi: 10.1111/j.1601-0825.2010.01701.x PubMedCrossRefGoogle Scholar
  54. 54.
    Peterson SN, Snesrud E, Schork NJ, Bretz WA (2011) Dental caries pathogenicity: a genomic and metagenomic perspective. Int Dent J 61(Suppl 1):11–22. doi: 10.1111/j.1875-595X.2011.00025.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56:650–654. doi: 10.1016/j.archoralbio.2011.01.011 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Tsuda H, Ochiai K, Suzuki N, Otsuka K (2010) Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. J Periodontal Res 45:626–634. doi: 10.1111/j.1600-0765.2010.01277.x PubMedCrossRefGoogle Scholar
  57. 57.
    Chang MC, Tsai YL, Chen YW, Chan CP, Huang CF, Lan WC, Lin CC, Lan WH, Jeng JH (2013) Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts. J Periodontal Res 48:66–73. doi: 10.1111/j.1600-0765.2012.01504.x PubMedCrossRefGoogle Scholar
  58. 58.
    Counotte GH, Prins RA, Janssen RH, Debie MJ (1981) Role of Megasphaera elsdenii in the fermentation of dl-[2-C] lactate in the rumen of dairy cattle. Appl Environ Microbiol 42:649–655PubMedCentralPubMedGoogle Scholar
  59. 59.
    Shetty SA, Marathe NP, Lanjekar V, Ranade D, Shouche YS (2013) Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 8:e79353. doi: 10.1371/journal.pone.0079353 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Dang AT, Cotton S, Sankaran-Walters S, Li CS, Lee CY, Dandekar S, Paster BJ, George MD (2012) Evidence of an increased pathogenic footprint in the lingual microbiome of untreated HIV infected patients. BMC Microbiol 12:153. doi: 10.1186/1471-2180-12-153 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Takeshita T, Suzuki N, Nakano Y, Yasui M, Yoneda M, Shimazaki Y, Hirofuji T, Yamashita Y (2012) Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci rep 2:215. doi: 10.1038/srep00215 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jessica E. Koopman
    • 1
    Email author
  • Wilfred F. M. Röling
    • 2
  • Mark J. Buijs
    • 1
  • Christopher H. Sissons
    • 3
  • Jacob M. ten Cate
    • 1
  • Bart J. F. Keijser
    • 4
  • Wim Crielaard
    • 1
  • Egija Zaura
    • 1
  1. 1.Department of Preventive Dentistry, Academic Centre for Dentistry AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Molecular Cell PhysiologyVU University AmsterdamAmsterdamNetherlands
  3. 3.Department of Pathology and Molecular MedicineUniversity of OtagoWellingtonNew Zealand
  4. 4.Microbiology and Systems BiologyTNO Earth, Environmental and Life SciencesZeistThe Netherlands

Personalised recommendations