Microbial Ecology

, Volume 69, Issue 2, pp 395–406 | Cite as

Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment

  • Kateryna Zhalnina
  • Raquel Dias
  • Patricia Dörr de Quadros
  • Austin Davis-Richardson
  • Flavio A. O. Camargo
  • Ian M. Clark
  • Steve P. McGrath
  • Penny R. Hirsch
  • Eric W. TriplettEmail author
Soil Microbiology


The Park Grass experiment (PGE) in the UK has been ongoing since 1856. Its purpose is to study the response of biological communities to the long-term treatments and associated changes in soil parameters, particularly soil pH. In this study, soil samples were collected across pH gradient (pH 3.6–7) and a range of fertilizers (nitrogen as ammonium sulfate, nitrogen as sodium nitrate, phosphorous) to evaluate the effects nutrients have on soil parameters and microbial community structure. Illumina 16S ribosomal RNA (rRNA) amplicon sequencing was used to determine the relative abundances and diversity of bacterial and archaeal taxa. Relationships between treatments, measured soil parameters, and microbial communities were evaluated. Clostridium, Bacteroides, Bradyrhizobium, Mycobacterium, Ruminococcus, Paenibacillus, and Rhodoplanes were the most abundant genera found at the PGE. The main soil parameter that determined microbial composition, diversity, and biomass in the PGE soil was pH. The most probable mechanism of the pH impact on microbial community may include mediation of nutrient availability in the soil. Addition of nitrogen to the PGE plots as ammonium sulfate decreases soil pH through increased nitrification, which causes buildup of soil carbon, and hence increases C/N ratio. Plant species richness and plant productivity did not reveal significant relationships with microbial diversity; however, plant species richness was positively correlated with soil microbial biomass. Plants responded to the nitrogen treatments with an increase in productivity and a decrease in the species richness.


Microbial community Archaea Bacteria Shannon diversity Plant species richness Biomass 



This work was supported by the National Science Foundation (grant number MCB-0454030); and the US Department of Agriculture (grant numbers 2005-35319-16300, 00067345). Rothamsted Research receives strategic funding from the UK Biotechnology and Biological Sciences Research Council for research and support for the Long-Term Experiments National Capability.

Supplementary material

248_2014_530_MOESM1_ESM.pdf (167 kb)
ESM 1 (PDF 167 kb)


  1. 1.
    Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670CrossRefGoogle Scholar
  2. 2.
    Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedCentralPubMedGoogle Scholar
  3. 3.
    Gans J, Woilinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390PubMedCrossRefGoogle Scholar
  4. 4.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Rousk J, Baath E, Brooks P, Lauber CL, Lozupone C, Caporaso GJ et al (2010) Soil bacterial and fungal communities across a pH gradient in arable soil. ISME J 4:1340–1351PubMedCrossRefGoogle Scholar
  6. 6.
    Lauber C, Strickland M, Bradford M, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415CrossRefGoogle Scholar
  7. 7.
    Lauber C, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environ Microbiol 75:5111–5120CrossRefGoogle Scholar
  8. 8.
    Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedCentralPubMedGoogle Scholar
  9. 9.
    Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854PubMedCrossRefGoogle Scholar
  10. 10.
    van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  11. 11.
    Poulton PR (2012) Rothamsted research: guide to the classical and other long-term experiments, datasets and sample archive.
  12. 12.
    Crawley MJ, Johnston AE, Silvertown J, Dodd M, de Mazancourt C, Heard MS, Henman DF, Edwards GR (2005) Determinants of species richness in the park grass experiment. Am Nat 165:179–192PubMedCrossRefGoogle Scholar
  13. 13.
    Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM (2006) The park grass experiment 1856–2006: its contribution to ecology. J Ecol 94:801–814CrossRefGoogle Scholar
  14. 14.
    Rousk J, Brooks P, Baath E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol 76:89–99PubMedCrossRefGoogle Scholar
  15. 15.
    Caporaso GJ, Lauber CL, Walters WA, Berg-Lyons D, Lozupone C, Turnbaugh PJ et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Giongo A, Crabb DB, Davis-Richardson AG, Chauliac D, Mobberley JM, Gano K et al (2010) PANGEA: pipeline for analysis of next generation amplicons. ISME J 4:852–861PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Giongo A, Davis-Richardson AG, Crabb DB, Triplett EW (2010) Tax collector: tools to modify existing 16S rRNA databases for the rapid classification at six taxonomic levels. Diversity 2:1015–1025CrossRefGoogle Scholar
  18. 18.
    Fagen JR, Giongo A, Brown CT, Davis-Richardson AG, Gano KA, Triplett EW (2012) Characterization of the relative abundance of the citrus pathogen Ca Liberibacter asiaticus in the microbiome of its insect vecor, Diaphorina citri, using high throughput 16S rRNA sequencing. Open Microbiol J 6:29–33PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole genome assembly program. Genome Res 13:2164–2170PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Cole JR, Wang O, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  22. 22.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  23. 23.
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Fierer N, Bradford M, Jackson R (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364PubMedCrossRefGoogle Scholar
  25. 25.
    Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470PubMedCrossRefGoogle Scholar
  26. 26.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    de Quadros PD, Zhalnina K, Davis-Richardson A, Fagen JR, Drew J, Bayer C et al (2012) The effect of tillage and crop rotation on soil microbial diversity and composition in a subtropical Acrisol. Diversity 4:375–395CrossRefGoogle Scholar
  28. 28.
    Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM et al (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6:1677–1687PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA et al (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendements on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927CrossRefGoogle Scholar
  31. 31.
    Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 pf the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kuhner CH, Matthies C, Acker G, Schmittroth M, Gössner AS, Drake HL (2000) Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int J Syst Evol Microbiol 2:873–81CrossRefGoogle Scholar
  33. 33.
    Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  34. 34.
    Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compre Rev Food Sci Food Safety 3:1–20CrossRefGoogle Scholar
  35. 35.
    Dilworth MJ, Howieson JG, Reeve WG, Tiwari RP, Glenn AR (2001) Acid tolerance in root-nodule bacteria and selecting for it. Aust J Exp Agric 41:435–446CrossRefGoogle Scholar
  36. 36.
    Cleveland C, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  37. 37.
    Mooshammer M et al (2014) Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:3694PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Barberán A et al (2014) Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett 17:794802CrossRefGoogle Scholar
  39. 39.
    Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050CrossRefGoogle Scholar
  40. 40.
    Xue K, Wu L, Deng Y, He Z, Van Nostrand J, Robertson PG et al (2013) Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl Environ Microbiol 79:1284–92PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Ridder-Duine A et al (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357CrossRefGoogle Scholar
  42. 42.
    Kowalchuk G, Buma D, Boer W, Klinkhamer P, Veen J (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kateryna Zhalnina
    • 1
  • Raquel Dias
    • 1
  • Patricia Dörr de Quadros
    • 1
    • 2
  • Austin Davis-Richardson
    • 1
  • Flavio A. O. Camargo
    • 2
  • Ian M. Clark
    • 3
  • Steve P. McGrath
    • 3
  • Penny R. Hirsch
    • 3
  • Eric W. Triplett
    • 1
    Email author
  1. 1.Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleUSA
  2. 2.Department of Soil ScienceFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Rothamsted ResearchHarpendenUK

Personalised recommendations