Microbial Ecology

, Volume 69, Issue 3, pp 652–667 | Cite as

Identification of mVOCs from Andean Rhizobacteria and Field Evaluation of Bacterial and Mycorrhizal Inoculants on Growth of Potato in its Center of Origin

  • Siva L. S. Velivelli
  • Peter Kromann
  • Paul Lojan
  • Mercy Rojas
  • Javier Franco
  • Juan Pablo Suarez
  • Barbara Doyle Prestwich
Plant Microbe Interactions

Abstract

Food security (a pressing issue for all nations) faces a threat due to population growth, land availability for growing crops, a changing climate (leading to increases in both abiotic and biotic stresses), heightened consumer awareness of the risks related to the use of agrichemicals, and also the reliance on depleting fossil fuel reserves for their production. Legislative changes in Europe mean that fewer agrichemicals will be available in the future for the control of crop pests and pathogens. The need for the implementation of a more sustainable agricultural system globally, incorporating an integrated approach to disease management, has never been more urgent. To that end, the Valorizing Andean Microbial Diversity (VALORAM) project (http://valoram.ucc.ie), funded under FP7, examined the role of microbial communities in crop production and protection to improve the sustainability, food security, environmental protection, and productivity for rural Andean farmers. During this work, microbial volatile organic compounds (mVOCs) of 27 rhizobacterial isolates were identified using gas chromatography/mass spectrometry (GC/MS), and their antifungal activity against Rhizoctonia solani was determined in vitro and compared to the activity of a selection of pure volatile compounds. Five of these isolates, Pseudomonas palleroniana R43631, Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 trialled in the field in their respective countries of origin, i.e., Bolivia, Peru, and Ecuador, showed significant increase in the yield of potato. The strategy followed in the VALORAM project may offer a template for the future isolation and determination of putative biocontrol and plant growth-promoting agents, useful as part of a low-input integrated pest management system.

Keywords

mVOCs Sustainability Andean potato Rhizobacteria AMF Biocontrol 

References

  1. 1.
    Ampofo JA, Tetteh W, Bello M (2009) Impact of commonly used agrochemicals on bacterial diversity in cultivated soils. Indian J Microbiol 49:223–229. doi:10.1007/s12088-009-0042-9 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Kloeppe JW, Rodríguez-Kábana R, Zehnder AW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26. doi:10.1071/AP99003 CrossRefGoogle Scholar
  4. 4.
    Ryu C-M, Hu C-H, Locy R, Kloepper J (2005) Study of mechanisms for plant growth-promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292. doi:10.1007/s11104-004-0301-9 CrossRefGoogle Scholar
  5. 5.
    Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421. doi:10.1017/S0953756201005196 CrossRefGoogle Scholar
  6. 6.
    Senés-Guerrero C, Torres-Cortés G, Pfeiffer S, Rojas M, Schüßler A (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24:405–417. doi:10.1007/s00572-013-0549-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi:10.1128/aem. 01078-07 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. doi:10.1007/s10886-012-0135-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. doi:10.1073/pnas.0730845100 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp. 103.026583 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Velázquez-Becerra C, Macías-Rodríguez L, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340. doi:10.1007/s11104-010-0583-z CrossRefGoogle Scholar
  12. 12.
    Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466. doi:10.1007/s12275-010-0068-z CrossRefPubMedGoogle Scholar
  13. 13.
    Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. doi:10.1111/j.1462-2920.2011.02582.x CrossRefPubMedGoogle Scholar
  14. 14.
    Yu S-M, Lee Y (2013) Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485–495. doi:10.1007/s11104-013-1652-x CrossRefGoogle Scholar
  15. 15.
    Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906. doi:10.1007/s10886-013-0315-y CrossRefPubMedGoogle Scholar
  16. 16.
    Blom D, Fabbri C, Eberl L, Weisskopf L (2010) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008. doi:10.1128/aem. 01968-10 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kai M, Crespo E, Cristescu SM, Harren FJ, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976. doi:10.1007/s00253-010-2810-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8:e63538. doi:10.1371/journal.pone.0063538 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964. doi:10.1016/j.soilbio.2004.10.021 CrossRefGoogle Scholar
  20. 20.
    Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78:5942–5944. doi:10.1128/aem. 01357-12 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Ghyselinck J, Velivelli SL, Heylen K, O’Herlihy E, Franco J, Rojas M, De Vos P, Prestwich BD (2013) Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst Appl Microbiol 36:116–127. doi:10.1016/j.syapm.2012.11.007 CrossRefPubMedGoogle Scholar
  22. 22.
    Velivelli S, O’Herlihy E, Janczura B, Doyle Prestwich B, Ghyselinck J, De Vos P (2012) Efficacy of rhizobacteria on plant growth-promotion and disease suppression in vitro. Acta Horticult 961:525–532Google Scholar
  23. 23.
    Athukorala SNP, Fernando WGD, Rashid KY, de Kievit T (2010) The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Sci Tech 20:875–890. doi:10.1080/09583157.2010.484484 CrossRefGoogle Scholar
  24. 24.
    Farag MA, Ryu C-M, Sumner LW, Paré PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi:10.1016/j.phytochem.2006.07.021 CrossRefPubMedGoogle Scholar
  25. 25.
    Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  26. 26.
    Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi:10.1007/s00203-006-0199-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Sang MK, Kim JD, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666–678. doi:10.1094/phyto-08-10-0224 CrossRefPubMedGoogle Scholar
  28. 28.
    Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. doi:10.1007/s00253-008-1760-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352. doi:10.1111/j.1365-2672.2010.04891.x CrossRefPubMedGoogle Scholar
  30. 30.
    Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. doi:10.1016/j.soilbio.2007.04.009 CrossRefGoogle Scholar
  31. 31.
    Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126. doi:10.1111/j.1365-2672.1993.tb03004.x CrossRefPubMedGoogle Scholar
  32. 32.
    Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J Appl Bacteriol 76:395–405CrossRefPubMedGoogle Scholar
  33. 33.
    Weise T, Kai M, Gummesson A, Troeger A, von Reuss S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J Org Chem 8:579–596. doi:10.3762/bjoc.8.65 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838. doi:10.1128/aem. 00881-08 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Marquez-Villavicencio MP, Weber B, Witherell RA, Willis DK, Charkowski AO (2011) The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS ONE 6:e22974. doi:10.1371/journal.pone.0022974 CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Huang C-J, Tsay J-F, Chang S-Y, Yang H-P, Wu W-S, Chen C-Y (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310. doi:10.1002/ps.3301 CrossRefPubMedGoogle Scholar
  37. 37.
    Song G, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Spinelli F, Cellini A, Vanneste J, Rodriguez-Estrada M, Costa G, Savioli S, Harren FM, Cristescu S (2012) Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 26:141–152. doi:10.1007/s00468-011-0667-2 CrossRefGoogle Scholar
  39. 39.
    de Faria, S.M., Resende A.S., Júnior O.J.S., Boddey, R.M.: Exploiting mycorrhizae and Rhizobium symbioses to recover seriously gegraded soils. In: Polacco, JC, Todd, CD (eds.) Ecological Aspects of Nitrogen Metabolism in Plants. John Wiley & Sons, Inc., pp. 195–215. (2011)Google Scholar
  40. 40.
    Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/aem. 71.9.4951-4959.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918 CrossRefPubMedGoogle Scholar
  42. 42.
    Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Sci 2012:15. doi:10.6064/2012/963401 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Siva L. S. Velivelli
    • 1
  • Peter Kromann
    • 2
  • Paul Lojan
    • 3
  • Mercy Rojas
    • 4
  • Javier Franco
    • 5
  • Juan Pablo Suarez
    • 3
  • Barbara Doyle Prestwich
    • 1
  1. 1.School of Biological Earth and Environmental SciencesUniversity College CorkCorkIreland
  2. 2.International Potato Center (CIP)QuitoEcuador
  3. 3.Departamento de Ciencias NaturalesUniversidad Técnica Particular de Loja (UTPL)LojaEcuador
  4. 4.International Potato Center (CIP)LimaPeru
  5. 5.Fundación PROINPA FoundationCochabambaBolivia

Personalised recommendations