Advertisement

Microbial Ecology

, Volume 69, Issue 3, pp 597–607 | Cite as

Estimation of Cultivable Bacterial Diversity in the Cloacae and Pharynx in Eurasian Griffon Vultures (Gyps fulvus)

  • Ana I. Vela
  • Encarna Casas-Díaz
  • José F. Fernández-Garayzábal
  • Emmanuel Serrano
  • Susana Agustí
  • María C. Porrero
  • Verónica Sánchez del Rey
  • Ignasi Marco
  • Santiago Lavín
  • Lucas Domínguez
Environmental Microbiology

Abstract

In this work, we describe the biodiversity of cloacal and pharynx culture-based bacteria (commensal and pathogenic), in 75 Eurasian griffon vultures (Gyps fulvus) from two geographic areas. We address the question of whether the cultivable microbiota of vultures is organised into assemblages occurring by chance. In addition, we assess bacterial diversity in both anatomic regions and geographic areas. Bacterial diversity was represented by 26 Gram-negative and 20 Gram-positive genera. The most common genera were Escherichia, Enterococcus, Staphylococcus, Clostridium and Lactococcus. Escherichia coli and Enterococcus faecalis were the most common species in cloacal and pharyngeal samples. Staphylococcus and Erysipelothrix were isolated from the pharynx and Salmonella and Corynebacterium from the cloacae, and no Campylobacter was isolated from the cloacal swabs. Ten cloacal swabs were positive for Salmonella, of which five isolates were Salmonella enterica serotype 4,(5),12:i:-, one isolate was S. enterica serotype Derby, three isolates were S. enterica serotype 61:k:1,5,7 and one isolate was S. enterica serotype Infantis. The null modelling approach revealed that the commensal bacteria of vultures are not structured in assemblages. On the other hand, differences in bacterial genus and species richness between cloacal and pharyngeal samples or between geographic areas were clear, with the pharynx in vultures from both geographic areas being richer. The results of this study indicate also that vultures can serve as a reservoir of certain pathogenic zoonotic bacteria. The dissemination of these zoonotic pathogens in wildlife could be prevented by periodic sanitary surveys.

Keywords

Griffon vultures Cloacae Pharynx Bacteria richness Species evenness 

Notes

Acknowledgments

This work was funded by project S2009/AGR-1489 of the Madrid Autonomous Community (Spain). The samples of G. fulvus were taken from the Territorial Cooperation Programme Spain-France-Andorra (NECROPIR-EFA 130/09). The authors thank the government institutions (Gestión Ambiental de Navarra S.A.; Gobierno de Navarra; Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural of the Generalitat de Catalunya), Grup d’Anellament Calldetenes-Osona, C. Fernández, P. Azkona, M. Carneiro and A. Margalida for the collection of the samples, and A. Casamayor and E. Pulido for their technical assistance. E. Serrano was supported by the postdoctoral program (SFRH/BPD/96637/2013) of the Fundação para a Ciência ea Tecnologia, Portugal.

References

  1. 1.
    Álvarez-Fernández E, Alonso-Calleja C, García-Fernández C, Capita R (2012) Prevalence and antimicrobial resistance of Salmonella serotypes isolated from poultry in Spain: comparison between 1993 and 2006. Int J Food Microbiol 53:281–287CrossRefGoogle Scholar
  2. 2.
    Amo K (2012) Salmonella. Nihon Rinsho 70:1348–3151PubMedGoogle Scholar
  3. 3.
    Bangert RL, Ward ACS, Staube EH, Cho BR, Widders PR (1988) A survey of the aerobic bacteria in the feces of captive raptors. Avian Dis 32:53–62CrossRefPubMedGoogle Scholar
  4. 4.
    Barrow PA, Jones MA, Smith AL, Wigley P (2012) The long view: Salmonella—the last forty years. Avian Pathol 41:413–20CrossRefPubMedGoogle Scholar
  5. 5.
    Brittingham MC, Temple SA, Duncan RM (1985) A survey of the prevalence of selected bacteria in wild birds. J Wildl Dis 24:299–307CrossRefGoogle Scholar
  6. 6.
    Broman T, Palmgren H, Bergström S, Sellin M, Waldenström J, Danielsson-Tham M-L, Olsen B (2002) Campylobacter jejuni in black-headed gulls (Larus ridibundus): prevalence, genotypes, and influence on C. jejuni epidemiology. J Clin Microbiol 40:4594–4602CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, USAGoogle Scholar
  8. 8.
    Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, Rychlik I (2011) Immune response of chikchen gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infect Immun 79:2755–2763CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    D’Aloia MA, Bailey TA, Samour JH, Naldo J, Howlett JC (1996) Bacterial flora of captive houbara (Chlamydotis undulata), kori (Ardeotis kori) and rufous-crested (Eupodotis ruficrista) bustards. Avian Pathol 25:459–468CrossRefPubMedGoogle Scholar
  10. 10.
    Darby J, Sheorey H (2008) Searching for Salmonella. Aust Fam Physician 37:806–810PubMedGoogle Scholar
  11. 11.
    Davies RH, Evans SJ, Preece BE, Chappell S, Kidd S, Jones YE (2001) Increase in Salmonella enterica subspecies diarizonae serovar 61: K: 1,5, (7) in sheep. Vet Rec 149:555–557CrossRefPubMedGoogle Scholar
  12. 12.
    de Miguel-Martínez I, Ramos-Macías A, Martín-Sánchez AM (1999) Otitis media due to Corynebacterium jeikeium. Eur J Clin Microbiol Infect Dis 18:231–232CrossRefPubMedGoogle Scholar
  13. 13.
    del Hoyo J, Elliot A, Sargatal G (1994) Handbook of the birds of the world. Lynx Edicions, BarcelonaGoogle Scholar
  14. 14.
    Development Core Team 3. 1. 1. A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Available: http://www.R-project.org. Accessed 1 August 2014.
  15. 15.
    Donázar JA, Cortés-Avizanda A, Carrete M (2010) Dietary shifts in two vultures after the demise of supplementary feeding stations: consequences of the EU sanitary legislation. Eur J Wildl Res 56:613–621CrossRefGoogle Scholar
  16. 16.
    Dubos RJ, Schaedler RW (1962) Effect of diet on fecal bacterial flora of mice and on their resistance to infection. J Exp Med 115:1161–1172CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    European Commission decision of 19 July 2007 concerning a financial contribution from the Community towards a survey on the prevalence and antimicrobial resistance of Campylobacter spp. in broiler flocks and on the prevalence of Campylobacter spp. and Salmonella spp. in broiler carcasses to be carried out in the Member States. Official J European Union 2007/516/EC.Google Scholar
  18. 18.
    Everard COR, Tota B, Bassett D, Ali C (1979) Salmonella in wildlife from Trinidad and Grenada, W.I. J Wildl Dis 15:213–219CrossRefPubMedGoogle Scholar
  19. 19.
    Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198CrossRefPubMedGoogle Scholar
  20. 20.
    Friedrich A, Szabo I, Dorn C, Schroeter A, Jaber M, Berendonk G, Brom M, Ledwolorz J,Google Scholar
  21. 21.
    Fulle R (1973) Ecological studies of lactobacillus flora associated with the crop epithelium of the fowl. J Appl Bacteriol 36:131–139CrossRefGoogle Scholar
  22. 22.
    García P, Malorny B, Hauser E, Mendoza MC, Rodicio MR (2013) Genetic types, gene repertoire, and evolution of isolates of the Salmonella enterica serovar 4,5,12:i:- Spanish clone assigned to different phage types. J Clin Microbiol 51:973–978CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Gilliland SE, Speck ML, Morgan CG (1975) Detection of Lactobacillus acidophilus in feces of humans, pigs and chickens. Appl Microbiol 30:541–545PubMedCentralPubMedGoogle Scholar
  24. 24.
    Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  25. 25.
    Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington, DC, USAGoogle Scholar
  26. 26.
    Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  27. 27.
    Gotelli NJ, Entsminger GL (2001) Ecosim: Null Models Software for Ecology, Version 7.72. Acquired Intelligence Inc, & Kesey-Bear http://homepages.together.net/gentsmin/ecosim.htm.
  28. 28.
    Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83:2091–2096CrossRefGoogle Scholar
  29. 29.
    Grimont PAD, Weill F (2007) Antigenic formulas of the Salmonella serovars, 9th edition 2007. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur, ParisGoogle Scholar
  30. 30.
    Hauser E, Hebner F, Tietze E, Helmuth R, Junker E, Prager R, Schroeter A, Rabsch W, Fruth A, Malorny B (2011) Diversity of Salmonella enterica serovar Derby isolated from pig, pork and humans in Germany. Int J Food Microbiol 151:141–149CrossRefPubMedGoogle Scholar
  31. 31.
    Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM (2011) Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900CrossRefPubMedGoogle Scholar
  32. 32.
    Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT (2014) Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ 2:e321. DOI 10.7717/peerj.321Google Scholar
  33. 33.
    Hoar BM, Whiteside DP, Ward L, Douglas Inglis G, Morck DW (2007) Evaluation of the enteric microflora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis). Zoo Biol 26:141–153CrossRefPubMedGoogle Scholar
  34. 34.
    Hugenholtz, P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: Reviews0003.Google Scholar
  35. 35.
    Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–585CrossRefGoogle Scholar
  36. 36.
    International Organization for Standardization (2007). ISO 6579: 2002 Amendment 1:2007 Horizontal method for the detection of Salmonella species.Google Scholar
  37. 37.
    Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S (1998) Effects of adherent Lactobacillus cultures on growth, weigh to organs and intestinal microflora and volatile fatty acids in broilers. Anim Feed Sci Technol 70:197–209CrossRefGoogle Scholar
  38. 38.
    Jones DM, Nisbert DJ (1980) The gram negative bacterial flora of the avian gut. Avian Pathol 9:33–38CrossRefPubMedGoogle Scholar
  39. 39.
    Kalla GR, Arya PL, Vyas UK (1981) Note on microflora in the respiratory tract of some chicken in Pajasthan. Indian J Animal Sci 51:254–257Google Scholar
  40. 40.
    Kalmback ER (1939) American vultures and the toxin of Clostridium botulinum. J Am Vet Med Assoc 94:187–191Google Scholar
  41. 41.
    Kapperud G, Rosef O (1983) Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl Environ Microbiol 45:375–380PubMedCentralPubMedGoogle Scholar
  42. 42.
    Lecis R, Chessa B, Cacciotto C, Addis MF, Coradduzza E, Berlinguer F, Muzzeddu M, Lierz M, Carcangiu L, Pittau M, Alberti A (2010) Identification and characterization of novel Mycoplasma spp. belonging to the hominis group from griffon vultures. Res Vet Sci 89:58–64CrossRefPubMedGoogle Scholar
  43. 43.
    Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacteria assemblages in great tit (Parus major) and blue tit P. caeruleus nestlings. J Avian Biol 36:510–516CrossRefGoogle Scholar
  44. 44.
    Millán J, Aduriz G, Moreno B, Juste RA, Barral M (2004) Salmonella isolates from wild birds and mammals in the Basque Country (Spain). Rev Sci Tech 23:905–911PubMedGoogle Scholar
  45. 45.
    Parra J, Telleria JL (2004) The increase in the Spanish population of Griffon Vulture Gyps fulvus during 1989–1999: effects of food and nest site availability. Bird Conser Int 14:33–41CrossRefGoogle Scholar
  46. 46.
    Reche MP, Jiménez PA, Alvarez F, Rios JEGdl, Rojas AM, de Pedro P (2003) Incidence of Salmonella in captive and wild free-living raptorial birds in central Spain. J Vet Med B Infect Dis Vet Public Health 50:42–44CrossRefPubMedGoogle Scholar
  47. 47.
    Rozdzinski E, Kern W, Schmeiser T, Kurrle E (1991) Corynebacterium jeikeium bacteremia at a tertiary care center. Infect 19:201–204CrossRefGoogle Scholar
  48. 48.
    Sambyal DS, Bassy KK (1980) Bacterial flora of the respiratory tract of wild birds in Ludhiana (Punjab). Zbl Vet Med B 27:165–168CrossRefGoogle Scholar
  49. 49.
    Smibert RM, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  50. 50.
    Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79CrossRefGoogle Scholar
  51. 51.
    Suárez-Pérez A, Ramírez AS, Rosales RS, Calabuig P, Poveda C, Rosselló-Móra R, Nicholas RAJ, Poveda JB (2012) Mycoplasma neophronis sp. nov., isolated from the upper respiratory tract of Canarian Egyptian vultures (Neophron percnopterus majorensis). Int J Syst Evol Microbiol 62:1321–1325CrossRefPubMedGoogle Scholar
  52. 52.
    Tizard I (2004) Salmonellosis in wild birds. Sem Avian Exotic Pet Med 13:50–66CrossRefGoogle Scholar
  53. 53.
    van Dongen WFD, White J, Brnad HB, Moodley Y, Merkling T, Leclaire S, Blanchard P, Danchin É, Hatch SA, Wagner RH (2013) Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol 13:11CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 5:223. doi: 10.3389/fmicb.2014.00223 CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Wang Q, Chang BJ, Riley TV (2010) Erysipelothrix rhusiopathiae. Vet Microbiol 140:405–417CrossRefPubMedGoogle Scholar
  56. 56.
    Winsor DK, Bloebaum AP, Mathewson JJ (1981) Gram-negative, aerobic, enteric pathogens among intestinal microflora of wild turkey vultures (Cathartes aura) in west central Texas. Appl Environ Microbiol 42:1123–4PubMedCentralPubMedGoogle Scholar
  57. 57.
    Wood S (2006) Generalized additive models: an introduction with R. CEC Statistic, Boca Raton, USAGoogle Scholar
  58. 58.
    Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extension in ecology with R. Springer, New York, USACrossRefGoogle Scholar
  59. 59.
    Zuur AF, Ieno EN, Elphick CS (2009) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ana I. Vela
    • 1
    • 2
  • Encarna Casas-Díaz
    • 3
  • José F. Fernández-Garayzábal
    • 1
    • 2
  • Emmanuel Serrano
    • 3
    • 4
  • Susana Agustí
    • 3
  • María C. Porrero
    • 1
  • Verónica Sánchez del Rey
    • 1
  • Ignasi Marco
    • 3
  • Santiago Lavín
    • 3
  • Lucas Domínguez
    • 1
  1. 1.Centro de Vigilancia Sanitaria Veterinaria (VISAVET)Universidad ComplutenseMadridSpain
  2. 2.Departamento de Sanidad Animal, Facultad de VeterinariaUniversidad ComplutenseMadridSpain
  3. 3.Servei d’Ecopatologia de Fauna Salvatge (SEFaS). Departament de Medicina i Cirurgia Animals. Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.CESAM, Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations