Advertisement

Microbial Ecology

, Volume 69, Issue 3, pp 512–524 | Cite as

Two Streptomyces Species Producing Antibiotic, Antitumor, and Anti-Inflammatory Compounds Are Widespread Among Intertidal Macroalgae and Deep-Sea Coral Reef Invertebrates from the Central Cantabrian Sea

  • Afredo F. Braña
  • Hans-Peter Fiedler
  • Herminio Nava
  • Verónica González
  • Aida Sarmiento-Vizcaíno
  • Axayacatl Molina
  • José L. Acuña
  • Luis A. García
  • Gloria Blanco
Environmental Microbiology

Abstract

Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.

Keywords

Avilés Canyon Antracyclines Lobophorins Maltophilins Streptomyces cyaneofuscatus Streptomyces carnosus 

Accession numbers

HG965212 HG965214 HG965215 HG965216 

Notes

Acknowledgments

This study was financially supported by the Universidad de Oviedo (UNOV-11-MA-02), Gobierno del Principado de Asturias (SV-PA-13-ECOEMP-62), and Ministerio de Economía y Competitividad, Proyecto DOSMARES/BIOCANT (MICINN-10-CTM2010-21810-C03-02). The authors are grateful to Ricardo Anadón and all other participants in the BIOCANT3 campaign. The authors want to thank all the people who contributed to sample collection, especially to Gloria Blanco Sotura, Manuela Blanco, Rubén Medina, and Noé Medina. We are also grateful to Santiago Cal for his valuable help and José L. Caso and José A. Guijarro for continuous support. We finally thank Miguel Campoamor and Marcos García for their excellent technical assistance and M.C. Macián (CECT) for her help in the identification of the strains. This is a contribution of the Asturian Marine Observatory.

Supplementary material

248_2014_508_MOESM1_ESM.pdf (92 kb)
Supplementary 1 Phenotypes of M-27 and M-40 strains grown in R5A agar plates. Pictures were taken after 5 days of growth and correspond to (A) sporulated cultures, and (B) the back side of the plates. (PDF 91 kb)
248_2014_508_MOESM2_ESM.pdf (75 kb)
Supplementary 2 Antibiograms against M. luteus (A) and E. coli ESS (B) of ethyl acetate extracts from M-27 and M-40 strains obtained after 5 days of growth in solid R5A medium. The extracts were obtained from 7 ml of culture under neutral (n) and acidic (a) conditions and resuspended in 50 μl of DMSO-methanol from which 15 μl were loaded onto the discs. (PDF 74 kb)
248_2014_508_MOESM3_ESM.pdf (31 kb)
Supplementary 3 Cell survival percentage in cytotoxicity assays with acidic ethyl acetate extracts from M-27 and M-40 strains carried out against two different tumour cell lines: HeLa, from cervical carcinoma, and HCT116, from colorectal carcinoma. The fact that the 1/10 diluted M-27 extracts appear more active than the undiluted ones against both cell lines could be explained by assay interferences due to the high complexity of the sample, which might contain other compounds with antagonist activity only observed at high concentrations. (PDF 31 kb)
248_2014_508_MOESM4_ESM.pdf (221 kb)
Supplementary 4 Volatile profile of marine Streptomyces species obtained through GS-MS analysis. Peak numbers indicate the compounds identified by comparison with the Whiley dabase as: geosmin (8); beta-patchoulene (9). (PDF 221 kb)

References

  1. 1.
    Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort AM (2007) Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiol Ecol 59:242–254CrossRefPubMedGoogle Scholar
  2. 2.
    Aoki Y, Matsumoto D, Kawaide H, Natsume M (2011) Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J Antibiot 645:607–611CrossRefGoogle Scholar
  3. 3.
    Arahal DR, Sánchez E, Macián MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family Leuconostocaceae. Int Microbiol 11:33–39PubMedGoogle Scholar
  4. 4.
    Armstrong E, Tyan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40CrossRefGoogle Scholar
  5. 5.
    Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009) Microbial desease and the coral holobiont. Trends Microbiol 17:554–562CrossRefPubMedGoogle Scholar
  6. 6.
    Braña AF, Rodríguez M, Pahari P, Rohr J, García LA, Blanco G (2014) Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Arch Microbiol 196:345–355CrossRefPubMedGoogle Scholar
  7. 7.
    Bull AT, Stach JEM, Ward AC, Goodfellow (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79CrossRefGoogle Scholar
  8. 8.
    Cane DE, Ikeda H (2011) Exploration and mining of the bacterial terpenome. Acc Chem Res 45:463–472CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Liu M, Dai H, Liu X, Song F, Zhang L (2013) Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol 97:3885–3892CrossRefPubMedGoogle Scholar
  10. 10.
    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  11. 11.
    Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821–842CrossRefPubMedGoogle Scholar
  12. 12.
    Dharmaraj S (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26:2123–2139CrossRefGoogle Scholar
  13. 13.
    Duarte L, Viejo RM, Martíñez B, de Castro M, Gómez-Gesteira M, Gallardo T (2013) Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol 51:1–10CrossRefGoogle Scholar
  14. 14.
    Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev 37:462–476CrossRefPubMedGoogle Scholar
  15. 15.
    Fernández C (2011) The retreat of large brown seaweeds on the north coast of Spain: the case of Saccorhiza polyschides. Eur J Phycol 46:352–360CrossRefGoogle Scholar
  16. 16.
    Fernández E, Weissbach U, Sánchez Reillo C, Braña AF, Méndez C, Rohr J, Salas JA (1998) Identification of two genes from Streptomyces argillaceus encoding two glycosyltransferases involved in the transfer of a disaccharide during the biosynthesis of the antitrumor drug mithramycin. J Bacteriol 180:4929–4937PubMedCentralPubMedGoogle Scholar
  17. 17.
    Fiedler HP (1993) Biosynthetic capacities of actinomycetes. 1. Screening for secondary metabolites by HPLC and UV-visible absorbance spectral libraries. Nat Prod Lett 2:119–128CrossRefGoogle Scholar
  18. 18.
    Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42CrossRefPubMedGoogle Scholar
  19. 19.
    Genilloud O, Peláez F, González I, Díez MT (1994) Diversity of actinomycetes and fungi on seaweeds from the Iberian coasts. Microbiologia 10:413–422PubMedGoogle Scholar
  20. 20.
    Giddings LA, Newman DJ (2013) Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 40:1181–1210CrossRefPubMedGoogle Scholar
  21. 21.
    González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415CrossRefPubMedGoogle Scholar
  22. 22.
    Grein A. (1987) in Advances in Applied Microbiology, ed. Laskin AI (Academic, Somerste, NJ) vol. 32, pp. 203–214Google Scholar
  23. 23.
    Guinotte J, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146CrossRefGoogle Scholar
  24. 24.
    Gust B, Challis GL, Fowler K, Kieser T, Chater K (2003) PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Hughes C, Fenical W (2010) Antibacterials from the sea. Chemistry 16:12512–12525CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Jachymova J, Votruba J, Viden I, Rezanka T (2002) Identification of Streptomyces odor spectrum. Folia Microbiol 47:37–41CrossRefGoogle Scholar
  27. 27.
    Jakobi M, Winkelmann G, Kaiser D, Kempler C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104CrossRefPubMedGoogle Scholar
  28. 28.
    Jiang ZD, Jensen PR, Fenical W (1999) Lobophorins A and B, new anti-inflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006CrossRefPubMedGoogle Scholar
  29. 29.
    Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial communitiy patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13:655–665CrossRefPubMedGoogle Scholar
  30. 30.
    Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251CrossRefPubMedGoogle Scholar
  31. 31.
    Lamela-Silvarrey C, Fernández C, Anadón R, Arrontes J (2012) Fucoid assemblages on the north coast of Spain: past and present (1977–2007). Bot Mar 55:199–207CrossRefGoogle Scholar
  32. 32.
    Li M, Chen YL (1986) Structural studies on rhodilunancins A and B. J Antibiot 39:430–436CrossRefPubMedGoogle Scholar
  33. 33.
    Louzao M, Anadón N, Arrontes J, Álvarez-Claudio C, Fuente DM, Ocharan F, Anadón A, Acuña JL (2010) Historical macrobenthic community assemblages in the Avilés Canyon, N Iberian Shelf: baseline biodiversity information for a marine protected area. J Mar Syst 80:47–56CrossRefGoogle Scholar
  34. 34.
    Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ (2010) Haliea mediterranea sp. nov., a new marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848CrossRefPubMedGoogle Scholar
  35. 35.
    Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278CrossRefPubMedGoogle Scholar
  36. 36.
    Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press. Boston, 454 pages.Google Scholar
  37. 37.
    Noro JC, Kalaitzis JA, Neilan BA (2012) Bioactive natural products from Papua New Guinea Marine Sponges. Chem Biodivers 9:2077–2095CrossRefPubMedGoogle Scholar
  38. 38.
    Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30CrossRefPubMedGoogle Scholar
  39. 39.
    Petersen F, Zähner H, Metzger JW, Freund S, Hummel RP (1993) Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J Antibiot 46:1126–1138CrossRefPubMedGoogle Scholar
  40. 40.
    Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362CrossRefPubMedGoogle Scholar
  41. 41.
    Radjasa OK, Vaste YM, Navarro G, Vervoort HC, Tenney K, Linington R, Crews P (2011) Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Biorg Med Chem 19:6658–6674CrossRefGoogle Scholar
  42. 42.
    Rahman H, Austin B, Mitchell W, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 8:498–518CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60:696–703CrossRefPubMedGoogle Scholar
  44. 44.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  45. 45.
    Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondia panicea. Appl Environ Microbiol 76:3702–3714CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Singh RP, Mantri VA, Reddy CRK, Jha B (2011) Isolation of seaweed-associated bacteria and their morphogenesis-inducing capability in axenic cultures of the green alga Ulva fasciata. Aquat Biol 12:13–21CrossRefGoogle Scholar
  47. 47.
    Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77CrossRefPubMedGoogle Scholar
  48. 48.
    Ströch K, Zeeck A, Antal N, Fiedler HP (2005) Retymicin, galtamycin B, Saquayamycin Z and ribofuranosyllumichome, novel secondary metabolites from Micromonospora sp. Tü6368. J Antibiotics 58:103–110CrossRefGoogle Scholar
  49. 49.
    Stutzman-Engwall KJ, Hutchinson CR (1989) Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci U S A 86:3135–3139CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580CrossRefPubMedGoogle Scholar
  51. 51.
    Sun W, Peng C, Zhao Y, Li Z (2012) Functional gene-guided discovery of type II polyketides from culturable actinomycetes associated with soft coral Scleronephthya sp. PLoS ONE 7:e42847CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Voerman SE, Llera E, Rico JM (2013) Climate driven changes in subtidal kelp forest communities in NW Spain. Mar Environ Res 90:119–127CrossRefPubMedGoogle Scholar
  53. 53.
    Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286CrossRefPubMedGoogle Scholar
  54. 54.
    Wei RB, Xi T, Li J, Wang P, Li FC, Lin YC, Qin S (2011) Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Mar Drugs 9:359–368CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Wiese J, Thiel V, Nagel KI, Staufenberger T, Imhobb JF (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic sea. Mar Biotechnol 11:287–300CrossRefPubMedGoogle Scholar
  56. 56.
    Yang S, Sun W, Tang C, Jin L, Zhang F, Li Z (2013) Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea. Microb Ecol 66:189–199CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang XY, He F, Wang GH, Bao J, Xu XY, Qi SH (2013) Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the South China Sea gorgonian corals. World J Microbiol Biotechnol 29:1107–1116CrossRefPubMedGoogle Scholar
  58. 58.
    Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Afredo F. Braña
    • 1
  • Hans-Peter Fiedler
    • 2
  • Herminio Nava
    • 3
  • Verónica González
    • 1
  • Aida Sarmiento-Vizcaíno
    • 1
  • Axayacatl Molina
    • 4
  • José L. Acuña
    • 4
  • Luis A. García
    • 5
  • Gloria Blanco
    • 1
  1. 1.Departamento de Biología Funcional, Área de Microbiologíae Instituto Universitario de Oncología del Principado de Asturias. Universidad de OviedoOviedoSpain
  2. 2.Mikrobiologisches InstitutUniversität TübingenTübingenGermany
  3. 3.Departamento de Biología de Organismos y Sistemas. Área de BotánicaUniversidad de OviedoOviedoSpain
  4. 4.Departamento de Biología de Organismos y Sistemas. Área de EcologíaUniversidad de OviedoOviedoSpain
  5. 5.Departamento de Ingeniería Química y Tecnología del Medio Ambiente. Área de Ingeniería QuímicaUniversidad de OviedoOviedoSpain

Personalised recommendations