Advertisement

Microbial Ecology

, Volume 69, Issue 1, pp 106–117 | Cite as

Evidence of Novel Phylogenetic Lineages of Methanogenic Archaea from Hypersaline Microbial Mats

  • José Q. García-Maldonado
  • Brad M. Bebout
  • R. Craig Everroad
  • Alejandro López-Cortés
Environmental Microbiology

Abstract

Methanogenesis in hypersaline and high-sulfate environments is typically dominated by methylotrophic methanogens because sulfate reduction is thermodynamically favored over hydrogenotrophic methanogenesis in these environments. We characterized the community composition of methanogenic archaea in both unmanipulated and incubated microbial mats from different hypersaline environments in Baja California Sur, Mexico. Clone libraries of methyl coenzyme-M reductase (mcrA) sequences and DGGE band patterns of 16S rRNA and mcrA sequences showed that the methanogen community in these microbial mats is dominated by methylotrophic methanogens of the genus Methanohalophilus. However, phylogenetic analyses of mcrA sequences from these mats also revealed two new lineages corresponding to putative hydrogenotrophic methanogens related with the strictly hydrogenotrophic order Methanomicrobiales. Stimulated methane production under decreased salinity and sulfate concentrations also suggested the presence of hydrogenotrophic methanogens in these samples. The relative abundance of mcrA gene and transcripts, estimated by SYBR green I qPCR assays, suggested the activity of different phylogenetic groups of methanogens, including the two novel clusters, in unmanipulated samples of hypersaline microbial mats. Using geochemical and molecular approaches, we show that substrate limitation and values of salinity and sulfate higher than 3 % and 25 mM (respectively) are potential environmental constraints for methanogenesis in these environments. Microcosm experiments with modifications of salinity and sulfate concentrations and TMA addition showed that upper salt and sulfate concentrations for occurrence of methylotrophic methanogenesis were 28 % and 263 mM, respectively. This study provides phylogenetic information about uncultivated and undescribed methanogenic archaea from hypersaline environments.

Keywords

Methanogenesis Hypersaline Environment Hydrogenotrophic Methanogen Methanogenic Community Methanomicrobiales 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was supported by CONACYT grant 105969-Z; 2008–2014, CIBNOR grant PC0.18-2010-2014 to A.L.C, and a grant from the NASA Exobiology Program to B.M.B. J.Q.G.M. is a recipient of a CONACYT doctoral fellowship (212242). R.C.E acknowledges the support of the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities. We are grateful to Exportadora de Sal, S.A. de C.V. for access to the Guerrero Negro field site. We would like to thank Cheryl A. Kelley for assistance with the determination of methane production rates, Angela Detweiler and Santiago Cadena for technical support in the lab, Ignacio Leyva for assistance in phylogenetic analyses. Ira Fogel of CIBNOR provided editorial services. Berenice Celis provided suggestions that improved the manuscript.

Competing Interests

None declared

Supplementary material

248_2014_473_Fig5_ESM.gif (115 kb)
Supplementary Fig. 1

(A) Maximum-likelihood phylogenetic tree based on sequences of 16S rRNA gene phylotypes retrieved from DGGE bands. Branch nodes supported by phylogenetic analysis with both bootstrap values >95 by maximum-likelihood (ML), and posterior probabilities >0.95 by Bayesian analyses (BA) are indicated by filled circles. Open circles indicate >75 % bootstrap support by ML, or >0.75 posterior probabilities support by BA analysis. Branch nodes without circles were not supported (bootstrap value <75 and posterior probabilities <0.75). The tree is rooted using a sequence of Cenarchaeum symbiosum (U51469) as the outgroup. GenBank accession numbers of the representative sequences of each cluster are indicated in parenthesis. The scale bar represents 0.1 changes per nucleotide position. (B) Composition of the phylogenetic clusters based on the distribution of archaeal 16S rRNA sequences retrieved by DGGE bands. (GIF 115 kb)

248_2014_473_MOESM1_ESM.eps (8.3 mb)
High resolution image (EPS 8.25 mb)
248_2014_473_MOESM2_ESM.docx (75 kb)
Supplementary Table 1 (DOCX 75.0 kb)

References

  1. 1.
    Bebout BM, Hoehler TM, Thamdrup B, Albert D, Carpenter SP, Hogan M, Turk K, Des Marais DJ (2004) Methane production by microbial mats under low sulphate concentrations. Geobiology 2:87–96. doi: 10.1111/j.1472-4677.2004.00024.x CrossRefGoogle Scholar
  2. 2.
    Conrad R, Frenzel R, Cohen Y (1995) Methane emission from hypersaline microbial mats: Lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–306. doi: 10.1111/j.1574-6941.1995.tb00294.x CrossRefGoogle Scholar
  3. 3.
    Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167PubMedCrossRefGoogle Scholar
  4. 4.
    García-Maldonado JQ, Bebout BM, Celis LB, López Cortés A (2012) Phylogenetic diversity of methyl-coenzyme M reductase (mcrA) gene and methanogenesis from trimethylamine in hypersaline environments. Int Microbiol 15:33–41. doi: 10.2436/20.1501.01.155 PubMedGoogle Scholar
  5. 5.
    Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327. doi: 10.1038/35085554 PubMedCrossRefGoogle Scholar
  6. 6.
    Kelley CA, Poole JA, Tazaz AM, Chanton JP, Bebout BM (2012) Substrate limitation for methanogenesis in hypersaline environments. Astrobiology 12:89–97. doi: 10.1089/ast.2011.0703 PubMedCrossRefGoogle Scholar
  7. 7.
    King GM (1988) Methanogenesis from methylated amines in hypersaline algal mat. Appl Environ Microbiol 54:130–136PubMedCentralPubMedGoogle Scholar
  8. 8.
    Lazar CS, Parkes RJ, Cragg BA, L’Haridon S, Toffin L (2011) Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ Microbiol 13:2078–2091. doi: 10.1111/j.1462-2920.2011.02425.x PubMedCrossRefGoogle Scholar
  9. 9.
    McGenity TJ (2010) Methanogens and methanogenesis in hypersaline environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1st edn. Springer, Berlin, pp 665–680CrossRefGoogle Scholar
  10. 10.
    Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, Des Marais DJ (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6:376–393. doi: 10.1111/j.1472-4669.2008.00166.x PubMedCrossRefGoogle Scholar
  11. 11.
    Smith JM, Green SJ, Kelley CA, Prufert-Bebout L, Bebout BM (2008) Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol 10:386–394. doi: 10.1111/j.1462-2920.2007.01459.x PubMedCrossRefGoogle Scholar
  12. 12.
    Tazaz AM, Bebout BM, Kelley CA, Poole J, Chanton JP (2013) Redefining the isotopic boundaries of biogenic methane: Methane from endoevaporites. Icarus 224:268–275. doi: 10.1016/j.icarus.2012.06.008 CrossRefGoogle Scholar
  13. 13.
    Charlou J, Donval J, Zitter T, Roy N, Jean-Baptiste P, Foucher J, Woodside J (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res I Oceanogr Res Pap 50:941–958. doi: 10.1016/S0967-0637(03)00093-1 CrossRefGoogle Scholar
  14. 14.
    King GM, Klug MJ, Lovley DR (1983) Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Mainet. Appl Environ Microbiol 45:1848–1853PubMedCentralPubMedGoogle Scholar
  15. 15.
    Oren A (2002) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. doi: 10.1038/sj/jim/7000176 PubMedCrossRefGoogle Scholar
  16. 16.
    Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Prensier G, Garcia JL (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828. doi: 10.1099/00207713-48-3-821 PubMedCrossRefGoogle Scholar
  17. 17.
    Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365. doi: 10.1128/AEM.71.11.7352-7365.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sørensen K, Řeháková K, Zapomělová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel. Aquat Microb Ecol 56:275–284. doi: 10.3354/ame01307 CrossRefGoogle Scholar
  19. 19.
    Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810. doi: 10.1128/AEM.01811-08 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kozubal MA, Romine M, Jennings R, Jay ZJ, Tringe SG, Rusch DB, Beam JP, McCue LA, Inskeep WP (2013) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622–634. doi: 10.1038/ismej.2012.132 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Rouvière P, Mandelco L, Winker S, Woese CR (1992) A detailed phylogeny for the methanomicrobiales. Syst Appl Microbiol 15:363–371. doi: 10.1016/s0723-2020(11)80209-2 PubMedCrossRefGoogle Scholar
  22. 22.
    Chesnin L, Yien CH (1951) Turibidimetric determination of available sulphates. Soil Sci Soc Am Proc 15:149–151. doi: 10.2136/sssaj1951.036159950015000C0032x CrossRefGoogle Scholar
  23. 23.
    Teske A, Hinrichs KU, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007. doi: 10.1128/aem.68.4.1994-2007.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  25. 25.
    Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL VEJ, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, The Netherlands, pp 1–23Google Scholar
  26. 26.
    Stahl DA, Amann RI (1991) Development and amplification of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248Google Scholar
  27. 27.
    Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530PubMedGoogle Scholar
  28. 28.
    López-Cortés A, Lanz-Landazuri A, Garcia-Maldonado JQ (2008) Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb Ecol 56:112–120. doi: 10.1007/s00248-007-9329-8 PubMedCrossRefGoogle Scholar
  29. 29.
    Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442. doi: 10.1128/AEM.02858-08 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  31. 31.
    Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. doi: 10.1093/bioinformatics/btl158 PubMedCrossRefGoogle Scholar
  32. 32.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741. doi: 10.1128/AEM.00556-06 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 PubMedCrossRefGoogle Scholar
  34. 34.
    Nawrocki EP (2009) Structural RNA homology search and alignment using covariance models. Ph.D. thesis. Washington University in St. LouisGoogle Scholar
  35. 35.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 PubMedCrossRefGoogle Scholar
  36. 36.
    Abascal F, Zardoya R, Posada D (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105. doi: 10.1093/bioinformatics/bti263 PubMedCrossRefGoogle Scholar
  37. 37.
    Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  38. 38.
    Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  39. 39.
    Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  40. 40.
    Oren A (2008) Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst 4:1–13. doi: 10.1186/1746-1448-4-2 CrossRefGoogle Scholar
  41. 41.
    Chakkiath PA, Murrell JC, Shouche YS (2012) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81:43–51. doi: 10.1111/j.1574-6941.2011.01274.x CrossRefGoogle Scholar
  42. 42.
    Weil CF, Cram DS, Sherf BA, Reeve JN (1988) Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus. J Bacteriol 170:4718–4726PubMedCentralPubMedGoogle Scholar
  43. 43.
    Springer E, Sachs MS, Woese CR, Boone DR (1995) Partial gene sequences for the A subunit of methylcoenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559. doi: 10.1099/00207713-45-3-554 PubMedCrossRefGoogle Scholar
  44. 44.
    Bapteste É, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: Evolution of methanogenesis and methanogens. Archaea 1:353–363PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Whitman WB, Boone DR, Koga Y, Keswani J (2001) Taxonomy of the methanogenic archaea. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of sytematic bacteriology, 2nd edn. Springer, New York, pp 211–355Google Scholar
  46. 46.
    Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50–60. doi: 10.1038/ismej.2012.79 PubMedCrossRefGoogle Scholar
  47. 47.
    Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc B Biol Sci 361:1007–1022. doi: 10.1098/rstb.2006.1841 CrossRefGoogle Scholar
  48. 48.
    Jonkers HM, Koh IO, Behrend P, Muyzer G, de Beer D (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb Ecol 49:291–300. doi: 10.1007/s00248-004-0260-y PubMedCrossRefGoogle Scholar
  49. 49.
    Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551. doi: 10.1128/MMBR.00033-10 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kivistö A, Santala V, Karp M (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 101:8671–8677. doi: 10.1016/j.biortech.2010.06.066 PubMedCrossRefGoogle Scholar
  51. 51.
    Kivistö AT, Karp MT (2011) Halophilic anaerobic fermentative bacteria. J Biotechnol 152:114–124. doi: 10.1016/j.jbiotec.2010.08.014 PubMedCrossRefGoogle Scholar
  52. 52.
    Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923. doi: 10.1111/j.1462-2920.2010.02365.x PubMedCrossRefGoogle Scholar
  53. 53.
    Burow LC, Woebken D, Bebout BM, McMurdie PJ, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Weber PK, Hoehler TM (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME J 6:863–874. doi: 10.1038/ismej.2011.142 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Burow LC, Woebken D, Marshall IPG, Singer SW, Pett-Ridge J, Prufert-Bebout L, Spormann AM, Bebout BM, Weber PK, Hoehler TM (2014) Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology. doi: 10.1111/gbi.12080 PubMedGoogle Scholar
  55. 55.
    Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A-B, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:1–10. doi: 10.1038/srep00135

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • José Q. García-Maldonado
    • 1
  • Brad M. Bebout
    • 2
  • R. Craig Everroad
    • 2
  • Alejandro López-Cortés
    • 1
    • 3
  1. 1.Laboratorio de Geomicrobiología y Biotecnología, Centro de Investigaciones Biológicas del NoroesteLa PazMexico
  2. 2.Exobiology Branch, Ames Research Center, National Aeronautics and Space AdministrationMoffett FieldUSA
  3. 3.Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita SurLa PazMexico

Personalised recommendations