Advertisement

Microbial Ecology

, Volume 69, Issue 1, pp 75–83 | Cite as

Protein Profiling Analyses of the Outer Membrane of Burkholderia cenocepacia Reveal a Niche-Specific Proteome

  • He Liu
  • Muhammad Ibrahim
  • Hui Qiu
  • Samina Kausar
  • Mehmoona Ilyas
  • Zhouqing Cui
  • Annam Hussain
  • Bin Li
  • Abdul Waheed
  • Bo ZhuEmail author
  • Guanlin XieEmail author
Environmental Microbiology

Abstract

Outer membrane proteins (OMPs) are integral β-barrel proteins of the Gram-negative bacterial cell wall and are crucial to bacterial survival within the macrophages and for eukaryotic cell invasion. Here, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to comprehensively assess the outer membrane proteome of Burkholderia cenocepacia, an opportunistic pathogen causing cystic fibrosis (CF), in conditions mimicking four major ecological niches: water, CF sputum, soil, and plant leaf. Bacterial cells were harvested at late log phase, and OMPs were extracted following the separation of soluble proteins by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE). Protein bands were excised and identified by LC-MS/MS analysis. The proteins identified under various growth conditions were further subjected to in silico analysis of gene ontology (subcellular localization, structural, and functional analyses). Overall, 72 proteins were identified as common to the four culture conditions, while 33, 37, 20, and 10 proteins were exclusively identified in the water, CF sputum, soil, and plant leaf environments, respectively. The functional profiles of the majority of these proteins revealed significant diversity in protein expression between the four environments studied and may indicate that the protein expression profiles are unique for every condition. Comparison of OMPs from one strain in four distinct ecological niches allowed the elucidation of proteins that are essential for survival in each niche, while the commonly expressed OMPs, such as RND efflux system protein, TonB-dependent siderophore receptor, and ABC transporter-like protein, represent promising targets for drug or vaccine development.

Keywords

Cystic Fibrosis Burkholderia Cystic Fibrosis Sputum Heme Utilization Soil Extract Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was supported by 12th Five Years Key Programs for Science and Technology Development of China (2012BAK11B02, 2012BAK11B06), Zhejiang Provincial Nature Science Foundation of China (LY12C14007), the Special Fund for Agro-Scientific Research in the Public Interest (201003029, 201003066), the National Natural Science Foundation of China (30871655, 31200003).

Supplementary material

248_2014_460_MOESM1_ESM.xlsx (18 kb)
Table S1 (XLSX 17 kb)
248_2014_460_MOESM2_ESM.xlsx (20 kb)
Table S2 (XLSX 19 kb)
248_2014_460_MOESM3_ESM.xlsx (18 kb)
Table S3 (XLSX 17 kb)
248_2014_460_MOESM4_ESM.xlsx (37 kb)
Table S4 (XLSX 37 kb)
248_2014_460_MOESM5_ESM.xlsx (11 kb)
Table S5 (XLSX 10 kb)

References

  1. 1.
    Burkholdera WH (1950) Sour skin, a bacteria rot of onion bulbs. Phytopathol 50:115–117Google Scholar
  2. 2.
    Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271PubMedCrossRefGoogle Scholar
  3. 3.
    Jonsson V (1970) Proposal of a new species Pseudomonas kingie. Int J Syst Bacteriol 20:255–257CrossRefGoogle Scholar
  4. 4.
    Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of 7 species of the genus Pseudomonas homology group-II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275PubMedCrossRefGoogle Scholar
  5. 5.
    Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 34:87–95PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang LX, Xie GL (2007) Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol Lett 266:231–235PubMedCrossRefGoogle Scholar
  7. 7.
    Schell MA, Zhao P, Wells L (2011) Outer membrane proteome of Burkholderia pseudomallei and Burkholderia mallei from diverse growth conditions. J Proteome Res 10:2417–2424PubMedCrossRefGoogle Scholar
  8. 8.
    Jagannadham MV (2008) Identification of proteins from membrane preparations by a combination of MALDI TOF-TOF and LC-coupled linear ion trap MS analysis of an antarctic bacterium Pseudomonas syringae Lz4W, a strain with unsequenced genome. Electrophoresis 29:4341–4350PubMedCrossRefGoogle Scholar
  9. 9.
    Kall L, Krogh A, Sonnhammer ELL (2007) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036CrossRefGoogle Scholar
  10. 10.
    Housden NG, Wojdyla JA, Korczynska J, Grishkovskaya I, Kirkpatrick N, Brzozowski AM, Kleanthous C (2010) Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. Proc Natl Acad Sci U S A 107:21412–21417PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fang Y, Lou MM, Li B, Xie GL, Wang F, Zhang LX, Luo YC (2010) Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World J Microbiol Biotechnol 26:443–450CrossRefGoogle Scholar
  13. 13.
    Dinesh SD (2010) Artificial Sputum Medium Nature Protocol Exchange. doi: 10.1038/protex. 2010.212 Google Scholar
  14. 14.
    Tahara ST, Mehta A, Rosato YB (2003) Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis). Proteomics 3:95–102PubMedCrossRefGoogle Scholar
  15. 15.
    Wickramasekara S, Neilson J, Patel N, Breci L, Hilderbrand A, Maier RM, Wysocki V (2011) Proteomics analyses of the opportunistic pathogen Burkholderia vietnamiensis using protein fractionations and mass spectrometry. J Biomed Biotechnol. doi: 10.1155/2011/701928
  16. 16.
    Olsen JV, de Godoy LMF, Li GQ, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021PubMedCrossRefGoogle Scholar
  17. 17.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, EsterM FLJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar
  21. 21.
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lee VT, Schneewind O (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15:1725–1752PubMedCrossRefGoogle Scholar
  24. 24.
    Kirzinger MW, Nadarasah G, Stavrinides J (2011) Insights into cross-kingdom plant pathogenic bacteria. Genes 2:980–997PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902PubMedCrossRefGoogle Scholar
  26. 26.
    Schirmer T (1998) General and specific porins from bacterial outer membranes. J Struct Biol 121:101–109PubMedCrossRefGoogle Scholar
  27. 27.
    Achouak W, Heulin T, Pages JM (2001) Multiple facets of bacterial porins. FEMS Microbiol Lett 199:1–7PubMedCrossRefGoogle Scholar
  28. 28.
    La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–25PubMedCrossRefGoogle Scholar
  29. 29.
    Vanderpool CK, Armstrong SK (2001) The Bordetella bhu locus is required for heme iron utilization. J Bacteriol 183:4278–4287PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Minamino T, Macnab RM (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–94PubMedCentralPubMedGoogle Scholar
  31. 31.
    Veesler D, Cambillau C (2001) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75:423–433CrossRefGoogle Scholar
  32. 32.
    Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogen. Infect Immun 79:548–561PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    de la Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Gingues S, Kooi C, Visser MB, Subsin B, Sokol PA (2005) Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J Bacteriol 187:8247–55PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    McKevitt AI, Bajaksouzian S, Klinger JD, Woods DE (1989) Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun 57:771–778PubMedCentralPubMedGoogle Scholar
  36. 36.
    Bylund J, Burgess LA, Cescutti P, Ernst RK, Speert DP (2006) Exopolysaccharides from Burkholderia cenocepacia inhibits neutrophil chemotaxis and scavenges reactive oxygen species. J Biol Chem 28:2526–2532Google Scholar
  37. 37.
    Maddocks SE, Oyston PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–23PubMedCrossRefGoogle Scholar
  38. 38.
    Tseng TT, Tyler MB, Setubal JC (2006) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9:S2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • He Liu
    • 1
  • Muhammad Ibrahim
    • 1
    • 2
  • Hui Qiu
    • 1
  • Samina Kausar
    • 2
  • Mehmoona Ilyas
    • 3
  • Zhouqing Cui
    • 1
  • Annam Hussain
    • 2
  • Bin Li
    • 1
  • Abdul Waheed
    • 2
  • Bo Zhu
    • 1
    Email author
  • Guanlin Xie
    • 1
    Email author
  1. 1.State Key Laboratory of Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Department of BiosciencesCOMSATS Institute of Information TechnologySahiwalPakistan
  3. 3.Department of BotanyPer Mehar Ali Shah Arid Agriculture UniversityRawalpindiPakistan

Personalised recommendations