Microbial Ecology

, Volume 69, Issue 1, pp 1–12 | Cite as

Microbe-Assisted Phytoremediation of Hydrocarbons in Estuarine Environments

  • Vanessa Oliveira
  • Newton C. M. Gomes
  • Adelaide Almeida
  • Artur M. S. Silva
  • Helena Silva
  • Ângela CunhaEmail author


Estuaries are sinks for various anthropogenic contaminants, such as petroleum hydrocarbons, giving rise to significant environmental concern. The demand for organisms and processes capable of degrading pollutants in a clean, effective, and less expensive process is of great importance. Phytoremedition approaches involving plant/bacteria interactions have been explored as an alternative, and halophyte vegetation has potential for use in phytoremedition of hydrocarbon contamination. Studies with plant species potentially suitable for microbe-assisted phytoremediation are widely represented in scientific literature. However, the in-depth understanding of the biological processes associated with the re-introduction of indigenous bacteria and plants and their performance in the degradation of hydrocarbons is still the limiting step for the application of these bioremediation solutions in a field context. The intent of the present review is to summarize the sources and effects of hydrocarbon contamination in estuarine environments, the strategies currently available for bioremediation (potential and limitations), and the perspectives of the use of halophyte plants in microbe-assisted phytoremediation approaches.


PAHs Salt Marsh Phytoremediation Petroleum Hydrocarbon Endophytic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Centre for Environmental and Marine Studies, University of Aveiro (CESAM, project Pest C/MAR/LA0017/2011). Financial support to V. Oliveira was provided by the Portuguese Foundation for Science and Technology (FCT) in the form of a PhD grant (SFRH/BD/46977/ 2008).


  1. 1.
    Vernberg FJ (1993) Salt‐marsh processes: a review. Environ Toxicol Chem 12:2167–2195Google Scholar
  2. 2.
    Baptista I, Santos AL, Cunha Â, Gomes N, Almeida A (2011) Bacterial biomass production in an estuarine system: high variability of leucine conversion factors and changes in bacterial community structure during incubation. Aquat Microb Ecol 62:299–310Google Scholar
  3. 3.
    Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260Google Scholar
  4. 4.
    Santos L, Cunha A, Silva H, Cacador I, Dias JM, Almeida A (2007) Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). FEMS Microbiol Ecol 60:429–441. doi: 10.1111/j.1574-6941.2007.00304.x PubMedGoogle Scholar
  5. 5.
    Oliveira V, Santos A, Coelho F, Gomes N, Silva H, Almeida A, Cunha  (2010) Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities. Microbial Ecol 60:167–179. doi: 10.1007/s00248-010-9678-6 Google Scholar
  6. 6.
    Cunha M, Pedro R, Almeida M, Silva M (2005) Activity and growth efficiency of heterotrophic bacteria in a salt marsh (Ria de Aveiro, Portugal). Microbiol Res 160:279–290PubMedGoogle Scholar
  7. 7.
    Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33Google Scholar
  8. 8.
    Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260. doi: 10.1016/j.chemosphere.2005.07.006 PubMedGoogle Scholar
  9. 9.
    Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169Google Scholar
  10. 10.
    Valiela I, Rutecki D, Fox S (2004) Salt marshes: biological controls of food webs in a diminishing environment. J Exp Mar Biol Ecol 300:131–159Google Scholar
  11. 11.
    Sanger D, Holland A, Scott G (1999) Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Arch Environ Contam Toxicol 37:458–471PubMedGoogle Scholar
  12. 12.
    McGee BL, Fisher DJ, Yonkos LT, Ziegler GP, Turley S (1999) Assessment of sediment contamination, acute toxicity, and population viability of the estuarine amphipod Leptocheirus plumulosus in Baltimore Harbor, Maryland, USA. Environ Toxicol Chem 18:2151–2160Google Scholar
  13. 13.
    O’Day PA, Carroll SA, Randall S, Martinelli RE, Anderson SL, Jelinski J, Knezovich JP (2000) Metal speciation and bioavailability in contaminated estuary sediments, Alameda Naval Air Station, California. Environ Sci Technol 34:3665–3673Google Scholar
  14. 14.
    Lee S, Cundy A (2001) Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England. Estuar Coast Shelf Sci 53:619–636Google Scholar
  15. 15.
    Fox WM, Connor L, Copplestone D, Johnson MS, Leah RT (2001) The organochlorine contamination history of the Mersey estuary, UK, revealed by analysis of sediment cores from salt marshes. Mar Environ Res 51:213–227PubMedGoogle Scholar
  16. 16.
    Fitzgerald E, Caffrey J, Nesaratnam S, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123:67–74PubMedGoogle Scholar
  17. 17.
    Hung GA, Chmura GL (2006) Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy. Environ Pollut 142:418–431PubMedGoogle Scholar
  18. 18.
    Vane C, Harrison I, Kim A (2007) Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, UK. Sci Total Environ 374:112–126PubMedGoogle Scholar
  19. 19.
    Valega M, Lillebo AI, Pereira ME, Cacador I, Duarte AC, Pardal MA (2008) Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor. Chemosphere 73:1224–1229. doi: 10.1016/j.chemosphere.2008.07.053 PubMedGoogle Scholar
  20. 20.
    Martins M, Ferreira AM, Vale C (2008) The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere 71:1599–1606. doi: 10.1016/j.chemosphere.2007.10.054 PubMedGoogle Scholar
  21. 21.
    Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543PubMedGoogle Scholar
  22. 22.
    Mucha AP, Almeida CMR, Magalhães CM, Vasconcelos MTSD, Bordalo AA (2011) Salt marsh plant–microorganism interaction in the presence of mixed contamination. Int Biodeter Biodegr 65:326–333. doi: 10.1016/j.ibiod.2010.12.005 Google Scholar
  23. 23.
    Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA (2011) Hydrocarbon degradation potential of salt marsh plant–microorganisms associations. Biodegradation 22:729–739PubMedGoogle Scholar
  24. 24.
    Todd GD, Chessin RL, Colman J (1999) Toxicological profile for total petroleum hydrocarbons (TPH). Department of Health and Human Services Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  25. 25.
    Carman KR, Means JC, Pomarico SC (1996) Response of sedimentary bacteria in a Louisiana salt marsh to contamination by diesel fuel. Aquat Microb Ecol 10:231–241. doi: 10.3354/ame010231 Google Scholar
  26. 26.
    Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691. doi: 10.1128/AEM.67.6.2683-2691.2001 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Balbo AL, Bosch R, Lalucat J, Mac Cormack W (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microbial Ecol 57:598–610Google Scholar
  28. 28.
    Yergeau E, Arbour M, Brousseau R, Juck D, Lawrence JR, Masson L, Whyte LG, Greer CW (2009) Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 75:6258–6267PubMedCentralPubMedGoogle Scholar
  29. 29.
    Labbe D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon‐contaminated Alpine soils. FEMS Microbiol Ecol 59:466–475PubMedGoogle Scholar
  30. 30.
    Santos HF, Carmo FL, Paes JE, Rosado AS, Peixoto RS (2011) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350Google Scholar
  31. 31.
    Gioia R, Steinnes E, Thomas GO, Mejier SN, Jones KC (2006) Persistent organic pollutants in European background air: derivation of temporal and latitudinal trends. J Environ Monit 8:700–710PubMedGoogle Scholar
  32. 32.
    Iqbal J, Gisclair D, McMillin DJ, Portier RJ (2007) Aspects of petrochemical pollution in southeastern Louisiana (USA): pre‐Katrina background and source characterization. Environ Toxicol Chem 26:2001–2009PubMedGoogle Scholar
  33. 33.
    Castle DM, Montgomery MT, Kirchman DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56:55–63PubMedGoogle Scholar
  34. 34.
    Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Van Nostrand JD, Zhou J (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PLoS One 7:e41305PubMedCentralPubMedGoogle Scholar
  35. 35.
    Gomes NCM, Borges LR, Paranhos R, Pinto FN, Mendonca-Hagler LC, Smalla K (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 66:96–109. doi: 10.1111/j.1574-6941.2008.00519.x Google Scholar
  36. 36.
    Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15PubMedGoogle Scholar
  37. 37.
    Simpson CD, Mosi AA, Cullen WR, Reimer KJ (1996) Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada. Sci Total Environ 181:265–278PubMedGoogle Scholar
  38. 38.
    Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955. doi: 10.1111/j.1574-6976.2008.00127.x PubMedGoogle Scholar
  39. 39.
    Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248PubMedGoogle Scholar
  40. 40.
    Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot 80:723–736Google Scholar
  41. 41.
    Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368. doi: 10.1007/bf00129093 Google Scholar
  42. 42.
    Freeman DJ, Cattell FC (1990) Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585Google Scholar
  43. 43.
    Bayoumi R (2009) Bacterial bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J Appl Sci Res 5:197–211Google Scholar
  44. 44.
    Liu K, Han W, Pan W-P, Riley JT (2001) Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system. J Hazard Mater 84:175–188PubMedGoogle Scholar
  45. 45.
    Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL (2011) Remediation of PAH-contaminated soils and sediments: a literature review. Virginia Polytecnic Institute, BlacksburgGoogle Scholar
  46. 46.
    Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. doi: 10.1111/j.1469-8137.2008.02531.x PubMedGoogle Scholar
  47. 47.
    Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974. doi: 10.1111/j.1469-8137.2008.02483.x PubMedGoogle Scholar
  48. 48.
    Lin Q, Mendelssohn IA (2009) Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Eco Eng 35:85–91Google Scholar
  49. 49.
    Couto M, Basto M, Vasconcelos M (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057PubMedGoogle Scholar
  50. 50.
    Marques B, Lillebø A, Pereira E, Duarte A (2011) Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus. Environ Pollut 159:1869–1876PubMedGoogle Scholar
  51. 51.
    Liu X, Wang Z, Zhang X, Wang J, Xu G, Cao Z, Zhong C, Su P (2011) Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms. Ecotox Environ Safe 74:1967–1972Google Scholar
  52. 52.
    Curado G, Rubio-Casal A, Figueroa E, Castillo J (2014) Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary. Int J Phytoremediat 16:1209–1220. doi: 10.1080/15226514.2013.821451
  53. 53.
    Manousaki E, Kalogerakis N (2011) Halophytes—an emerging trend in phytoremediation. Int J Phytoremediat 13:959–969Google Scholar
  54. 54.
    EPA U (2000) Introduction to Phytoremediation. EPA-report EPA/600/R-99/107. Accessed May 2000
  55. 55.
    Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soil Sediment 1:37–43. doi: 10.1007/bf02986468 Google Scholar
  56. 56.
    Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236PubMedGoogle Scholar
  57. 57.
    Lin Q, Mendelssohn IA (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10:263–274Google Scholar
  58. 58.
    Meudec A, Dussauze J, Deslandes E, Poupart N (2006) Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. Chemosphere 65:474–481PubMedGoogle Scholar
  59. 59.
    Al-Mailem D, Sorkhoh N, Marafie M, Al-Awadhi H, Eliyas M, Radwan S (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101:5786–5792PubMedGoogle Scholar
  60. 60.
    Genouw G, De Naeyer F, Van Meenen P, Van de Werf H, De Nijs W, Verstraete W (1994) Degradation of oil sludge by landfarming—a case-study at the Ghent harbour. Biodegradation 5:37–46Google Scholar
  61. 61.
    Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243PubMedGoogle Scholar
  62. 62.
    Zhong Y, Luan T, Wang X, Lan C, Tam NF (2007) Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75:175–186PubMedGoogle Scholar
  63. 63.
    Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol B 8:163–178Google Scholar
  64. 64.
    Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–3. doi: 10.4061/2011/941810
  65. 65.
    Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil‐degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186PubMedGoogle Scholar
  66. 66.
    Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179PubMedGoogle Scholar
  67. 67.
    Kaakinen J, Vä P, Kuokkanen T, Roppola K (2007) Studies on the effects of certain soil properties on the biodegradation of oils determined by the manometric respirometric method. J Autom Method Manag Chem 2007:1–7. doi: 10.1155/2007/34601
  68. 68.
    Minai-Tehrani D, Minoui S, Herfatmanesh A (2009) Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. B Environ Contam Toxicol 82:179–184Google Scholar
  69. 69.
    Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575PubMedGoogle Scholar
  70. 70.
    Banks M, Schwab P, Liu B, Kulakow P, Smith J, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Adv Biochem Eng Biotechnol 78:75–96PubMedGoogle Scholar
  71. 71.
    Mille G, Almallah M, Bianchi M, Van Wambeke F, Bertrand J (1991) Effect of salinity on petroleum biodegradation. Fresen J Anal Chem 339:788–791Google Scholar
  72. 72.
    Bertrand J-C, Bianchi M, Mallah MA, Acquaviva M, Mille G (1993) Hydrocarbon biodegradation and hydrocarbonoclastic bacterial communities composition grown in seawater as a function of sodium chloride concentration. J Exp Mar Biol Ecol 168:125–138Google Scholar
  73. 73.
    Diaz MP, Grigson SJ, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532Google Scholar
  74. 74.
    Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721PubMedGoogle Scholar
  75. 75.
    Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg JJ (2004) Rhizoremediation: A beneficial plant-microbe interaction. Mol Plant-Microbe 17:6–15Google Scholar
  76. 76.
    Moreira SM, Lima I, Ribeiro R, Guilhermino L (2006) Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: Laboratory and in situ assays. Aquat Toxicol 78:186–201. doi: 10.1016/j.aquatox.2006.03.001 PubMedGoogle Scholar
  77. 77.
    Segura A, Rodriguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2:452–464. doi: 10.1111/j.1751-7915.2009.00113.x PubMedCentralPubMedGoogle Scholar
  78. 78.
    Frick C, Germida J, Farrell R (1999) Assessment of phytoremediation as an in situ technique for cleaning oil-contaminated sites. In technical seminar of chemical spills (pp. 105a–124a).
  79. 79.
    Cunningham SD, Anderson TA, Schwab AP, Hsu F (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114Google Scholar
  80. 80.
    Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. doi: 10.1080/0735-260291044377 Google Scholar
  81. 81.
    Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310. doi: 10.1111/j.1574-6941.2006.00121.x PubMedGoogle Scholar
  82. 82.
    Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064. doi: 10.1016/j.soilbio.2008.09.006 Google Scholar
  83. 83.
    Sheng X, Gong J (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592Google Scholar
  84. 84.
    Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833Google Scholar
  85. 85.
    Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234. doi: 10.1111/j.1574-6968.2009.01637.x PubMedGoogle Scholar
  86. 86.
    Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang X-D, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479PubMedGoogle Scholar
  87. 87.
    Muratova AY, Bondarenkova A, Panchenko L, Turkovskaya O (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Appl Biochem Microbiol 46:789–794Google Scholar
  88. 88.
    Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401PubMedGoogle Scholar
  89. 89.
    Hong SH, Ryu H, Kim J, Cho K-S (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22:593–601PubMedGoogle Scholar
  90. 90.
    Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediat 14:35–47Google Scholar
  91. 91.
    Liu W, Sun J, Ding L, Luo Y, Chen M, Tang C (2013) Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant Soil (1-2):533–542Google Scholar
  92. 92.
    Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588. doi: 10.1038/nbt960 PubMedGoogle Scholar
  93. 93.
    Gomes NCM, Cleary DF, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler LCS, Smalla K (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 11:e14065Google Scholar
  94. 94.
    Juhanson J, Truu J, Heinaru E, Heinaru A (2009) Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 70:446–455PubMedGoogle Scholar
  95. 95.
    Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683PubMedGoogle Scholar
  96. 96.
    Pilon-Smits E (2005) Phytoremedition. Annu Rev Plant Biol 56:15–39. doi: 10.1146/annurev.arplant.56.032604.144214 PubMedGoogle Scholar
  97. 97.
    Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase alkB genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350PubMedGoogle Scholar
  98. 98.
    Schneegurt MA, Kulpa CF (1998) The application of molecular techniques in environmental biotechnology for monitoring microbial systems. Biotechnol Appl Biochem 27:73–79Google Scholar
  99. 99.
    Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedGoogle Scholar
  100. 100.
    Germaine K, Keogh E, Garcia‐Cabellos G, Borremans B, Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ER (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118PubMedGoogle Scholar
  101. 101.
    Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad 85:331–336Google Scholar
  102. 102.
    Baek K-H, Yoon B-D, Cho D-H, Kim B-H, Oh H-M, Kim H-S (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. J Microbiol Biotechnol 19:339–345PubMedGoogle Scholar
  103. 103.
    Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64Google Scholar
  104. 104.
    Wang Y, Sheng H-F, He Y, Wu J-Y, Jiang Y-X, Tam NF-Y, Zhou H-W (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78:8264–8271PubMedCentralPubMedGoogle Scholar
  105. 105.
    Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedCentralPubMedGoogle Scholar
  106. 106.
    Bowen JL, Morrison HG, Hobbie JE, Sogin ML (2012) Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME J 6:2014–2023PubMedCentralPubMedGoogle Scholar
  107. 107.
    Zhang W, Wu X, Liu G, Chen T, Zhang G, Dong Z, Yang X, Hu P (2013) Pyrosequencing reveals bacterial diversity in the rhizosphere of three Phragmites australis ecotypes. Geomicrobiol J 30:593–599Google Scholar
  108. 108.
    Singleton DR, Richardson SD, Aitken MD (2011) Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 22:1061–1073PubMedCentralPubMedGoogle Scholar
  109. 109.
    Sutton NB, Maphosa F, Morillo JA, Al-Soud WA, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630PubMedCentralPubMedGoogle Scholar
  110. 110.
    RamanaRao MV, Weindorf D, Breitenbeck G, Baisakh N (2012) Differential expression of the transcripts of Spartina alterniflora Loisel (smooth cordgrass) induced in response to petroleum hydrocarbon. Mol Biotechnol 51:18–26PubMedGoogle Scholar
  111. 111.
    Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505. doi: 10.1128/AEM.71.12.8500-8505.2005 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Radwan S, Dashti N, El-Nemr I (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediat 7:19–32Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vanessa Oliveira
    • 1
  • Newton C. M. Gomes
    • 1
  • Adelaide Almeida
    • 1
  • Artur M. S. Silva
    • 2
  • Helena Silva
    • 1
  • Ângela Cunha
    • 1
    Email author
  1. 1.Centre for Environmental and Marine Studies (CESAM) and Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.QOPNA and Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations