Advertisement

Microbial Ecology

, Volume 68, Issue 2, pp 324–328 | Cite as

Plasmid-Related Quinolone Resistance Determinants in Epidemic Vibrio parahaemolyticus, Uropathogenic Escherichia coli, and Marine Bacteria from an Aquaculture Area in Chile

  • Sandra Aedo
  • Larisa Ivanova
  • Alexandra Tomova
  • Felipe C. Cabello
Environmental Microbiology

Abstract

Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6′)-Ib-cr, was identical to aac(6′)-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6′)-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12.

Keywords

Minimal Inhibitory Concentration Marine Bacterium Quinolone Resistance Coli Isolate Aquaculture Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant from the Lenfest Ocean Program/Pew Charitable Trusts to F.C.C. and by a fellowship from the John Simon Guggenheim Foundation to F.C.C. that allowed him to begin to study antimicrobial use in aquaculture. We thank Dr. Romilio Espejo, Universidad de Chile, Santiago, Chile for V. parahaemolyticus strains. We thank Dr. Maria L. Rioseco, Hospital Regional de Puerto Montt, Chile, for the E. coli clinical isolates used in this study. Dr. D.C. Hooper, Massachusetts General Hospital, Boston, MA, USA, for J53AzR. We also thank Dr. Henry P. Godfrey for his important help for improving the text and Mrs. Harriett Harrison for preparation of the manuscript. We thank Mariya Sambir and Rene Devis for assistance with some experiments.

Authors’ contributions

SA identified the genes VPA0095 and aac(6′)-Ib-cr in V. parahaemolyticus and E. coli clinical isolates, respectively, cloned the genes, performed susceptibility tests, isolated the chromosomal mutant resistant to quinolones, cured plasmid, carried out DNA sequence analysis, and participated in manuscript drafting. LI and AT kept and studied antimicrobial susceptibility of marine bacteria, sequenced their aac(6′)-Ib-cr, and performed their DNA sequence analysis. FC obtained the funds for this work, planned the experiments, analyzed the data, and participated in manuscript drafting.

Supplementary material

248_2014_409_MOESM1_ESM.pptx (75 kb)
Fig. S1 Detection by DNA hybridization of aac(6′)-Ib-cr gene in plasmid DNA from urinary tract isolates of E. coli resistant to quinolones. A. Plasmid DNA from E. coli clinical isolates. B. Plasmid DNA hybridization with a aac(6′)-Ib-cr probe. Lanes: 1. isolate 165; 2. isolate 110; 3. isolate 248; 4. isolate 435; 5. isolate 562; 6. isolate 146; 7. isolate 189; 8. isolate 580; 9. isolate 207; 10. isolate 204; 11. E. coli DH5α pUC19-aac(6′)-Ib-cr (positive control); 12. pBR328 (negative control) (PPTX 74 kb)
248_2014_409_MOESM2_ESM.docx (11 kb)
Table S1 (DOCX 11 kb)

References

  1. 1.
    Berge AC, Atwill ER, Sischo WM (2005) Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev Vet Med 69:25–38CrossRefPubMedGoogle Scholar
  2. 2.
    Prescott JF (2006) History of antimicrobial usage in agriculture. In: Aarestrup FM (ed) Antimicrobial resistance in bacteria of animal origin, 1st edn. ASM Press, Washington, pp 19–27Google Scholar
  3. 3.
    Cox LA Jr, Ricci PF (2008) Causal regulations vs. political will: why human zoonotic infections increase despite precautionary bans on animal antibiotics. Environ Int 34:459–475CrossRefPubMedGoogle Scholar
  4. 4.
    Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52CrossRefPubMedGoogle Scholar
  6. 6.
    Kloos WE, Ballard DN, Webster JA, Hubner RJ, Tomasz A, Couto I, Sloan GL, Dehart HP, Fiedler F, Schubert K, de Lencastre H, Sanches IS, Heath HE, Leblanc PA, Ljungh A (1997) Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47:313–323CrossRefPubMedGoogle Scholar
  7. 7.
    Wu S, Piscitelli C, de Lencastre H, Tomasz A (1996) Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441CrossRefPubMedGoogle Scholar
  8. 8.
    Klare I, Heier H, Claus H, Bohme G, Marin S, Seltmann G, Hakenbeck R, Antanassova V, Witte W (1995) Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb Drug Resist 1:265–272CrossRefPubMedGoogle Scholar
  9. 9.
    Bates J, Jordens Z, Selkon JB (1993) Evidence for an animal origin of vancomycin-resistant enterococci. Lancet 342:490–491CrossRefPubMedGoogle Scholar
  10. 10.
    Molbak K (2005) Human health consequences of antimicrobial drug-resistant Salmonella and other foodborne pathogens. Clin Infect Dis 41:1613–1620CrossRefPubMedGoogle Scholar
  11. 11.
    Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ (2009) Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis 49:1248–1253CrossRefPubMedGoogle Scholar
  12. 12.
    Buschmann AH, Tomova A, Lopez A, Maldonado MA, Henriquez LA, Ivanova L, Moy F, Godfrey HP, Cabello FC (2012) Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One 7:e42724PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Sapkota A, Sapkota AR, Kucharski M, Burke J, McKenzie S, Walker P, Lawrence R (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34:1215–1226CrossRefPubMedGoogle Scholar
  14. 14.
    Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942CrossRefPubMedGoogle Scholar
  15. 15.
    Saga T, Kaku M, Onodera Y, Yamachika S, Sato K, Takase H (2005) Vibrio parahaemolyticus chromosomal qnr homologue VPA0095: demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli. Antimicrob Agents Chemother 49:2144–2145PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P (2005) Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother 56:1118–1121CrossRefPubMedGoogle Scholar
  17. 17.
    Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49:3523–3525PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Martinez-Martinez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799CrossRefPubMedGoogle Scholar
  19. 19.
    Nordmann P, Poirel L (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 56:463–469CrossRefPubMedGoogle Scholar
  20. 20.
    Cambau E, Lascols C, Sougakoff W, Bebear C, Bonnet R, Cavallo JD, Gutmann L, Ploy MC, Jarlier V, Soussy CJ, Robert J (2006) Occurrence of qnrA-positive clinical isolates in French teaching hospitals during 2002–2005. Clin Microbiol Infect 12:1013–1020CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez-Escalona N, Cachicas V, Acevedo C, Rioseco ML, Vergara JA, Cabello F, Romero J, Espejo RT (2005) Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerg Infect Dis 11:129–131PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Wang H, Dzink-Fox JL, Chen M, Levy SB (2001) Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 45:1515–1521PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Bouanchaud DH, Scavizzi MR, Chabbert YA (1968) Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. J Gen Microbiol 54:417–425CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida H, Bogaki M, Nakamura M, Nakamura S (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34:1271–1272PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC (2002) gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46:3418–3421PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Zaiss NH, Witte W, Nubel U (2010) Fluoroquinolone resistance and Clostridium difficile, Germany. Emerg Infect Dis 16:675–677PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Chen DQ, Yang L, Luo YT, Mao MJ, Lin YP, Wu AW (2013) Prevalence and characterization of quinolone resistance in Laribacter hongkongensis from grass carp and Chinese tiger frog. J Med Microbiol 62:1559–1564CrossRefPubMedGoogle Scholar
  28. 28.
    Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88CrossRefPubMedGoogle Scholar
  29. 29.
    Martinez JL, Baquero F (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44:1771–1777PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664–689PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sandra Aedo
    • 1
  • Larisa Ivanova
    • 1
  • Alexandra Tomova
    • 1
  • Felipe C. Cabello
    • 1
  1. 1.Department of Microbiology and ImmunologyNew York Medical CollegeValhallaUSA

Personalised recommendations