Microbial Ecology

, Volume 67, Issue 4, pp 951–961 | Cite as

Comparisons of the Fungal and Protistan Communities among Different Marine Sponge Holobionts by Pyrosequencing

  • Liming He
  • Fang Liu
  • Valliappan Karuppiah
  • Yi Ren
  • Zhiyong Li
Invertebrate Microbiology

Abstract

To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (41176127) and the High-Tech Research and Development Program of China (2013AA092901).

References

  1. 1.
    Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  3. 3.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4:e6372PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Anderson R, Wylezich C, Glaubitz S, Labrenz M, Jürgens K (2013) Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ Microbiol 15:1580–1594CrossRefPubMedGoogle Scholar
  5. 5.
    Annenkova NV, Lavrov DV, Belikov SI (2011) Dinoflagellates associated with freshwater sponges from the ancient lake baikal. Protist 162:222–236CrossRefPubMedGoogle Scholar
  6. 6.
    Baker PW, Kennedy J, Dobson AD, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547CrossRefPubMedGoogle Scholar
  7. 7.
    Bass D, Moreira D, Lopez-Garcia P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161CrossRefPubMedGoogle Scholar
  8. 8.
    Boonyuen N, Chuaseeharonnachai C, Suetrong S, Sri-Indrasutdhi V, Sivichai S, Jones EB, Pang KL (2011) Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia 103:1351–1371CrossRefPubMedGoogle Scholar
  9. 9.
    Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163CrossRefPubMedGoogle Scholar
  10. 10.
    Brate J, Logares R, Berney C, Ree DK, Klaveness D, Jakobsen KS, Shalchian-Tabrizi (2010) Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 4:1144–1153CrossRefPubMedGoogle Scholar
  11. 11.
    Cardol P, Franck F (2010) Eukaryotic algae: where lies the diversity of oxygenic photosynthesis. Photosynth Res 106:1–2CrossRefPubMedGoogle Scholar
  12. 12.
    Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine protistan diversity. Ann Rev Mar Sci 4:467–493CrossRefPubMedGoogle Scholar
  13. 13.
    Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL (2008) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci U S A 105:16641–16646PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Countway PD, Gast RJ, Dennett MR, Savai P, Rose JM, Caron DA (2007) Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol 9:1219–1232CrossRefPubMedGoogle Scholar
  15. 15.
    Davy SK, Trautman DA, Borowitzka MA, Hinde R (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. J Exp Biol 205:3505–3511PubMedGoogle Scholar
  16. 16.
    Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721CrossRefPubMedGoogle Scholar
  17. 17.
    Efstratiou MA, Velegraki A (2010) Recovery of melanized yeasts from Eastern Mediterranean beach sand associated with the prevailing geochemical and marine flora patterns. Med Mycol 48:413–415CrossRefPubMedGoogle Scholar
  18. 18.
    Epstein S, López-García P (2008) “Missing” protists: a molecular prospective. Biodivers Conserv 17:261–276CrossRefGoogle Scholar
  19. 19.
    Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by percoll density gradient fraction. Cell Tissue Res 293:365–373CrossRefPubMedGoogle Scholar
  21. 21.
    Genilloud O, Pelaez F, Gonzalez I, Diez MT (1994) Diversity of actinomycetes and fungi on seaweeds from the Iberian coasts. Microbiologia 10:413–422PubMedGoogle Scholar
  22. 22.
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365CrossRefPubMedGoogle Scholar
  23. 23.
    Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefPubMedGoogle Scholar
  24. 24.
    Hill MS (1996) Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar Biol 125:649–654CrossRefGoogle Scholar
  25. 25.
    Höller U, Wright AD, Mathée GF, König GM, Draeger S, Austd H-J, Schulzd B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365CrossRefGoogle Scholar
  26. 26.
    Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  27. 27.
    Kouris A, Juniper SK, Frébourg G, Gaill F (2007) Protozoan–bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Mar Ecol 28:63–71CrossRefGoogle Scholar
  28. 28.
    Kramarsky-Winter E, Harel M, Siboni N, Ben Dov E, Brickner I, Loya Y, Kushmaro A (2006) Identification of a protist-coral association and its possible ecological role. Mar Ecol Prog Ser 317:67–73CrossRefGoogle Scholar
  29. 29.
    Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lee Y-K, Lee J-H, Lee H-K (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264Google Scholar
  31. 31.
    Lemloh ML, Fromont J, Brummer F, Usher KM (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol 9:4PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241CrossRefPubMedGoogle Scholar
  33. 33.
    Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15CrossRefGoogle Scholar
  34. 34.
    Lopez-Garcia P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554CrossRefPubMedGoogle Scholar
  35. 35.
    Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721CrossRefPubMedGoogle Scholar
  36. 36.
    Lozupone C, Hamady M, Knight R (2006) UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Maldonado M, Cortadellas N, Trillas MI, Ruetzler K (2005) Endosymbiotic yeast maternally transmitted in a marine sponge. Biol Bull 209:94–106CrossRefPubMedGoogle Scholar
  38. 38.
    Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930CrossRefGoogle Scholar
  39. 39.
    Massana R, Pedros-Alio C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218CrossRefPubMedGoogle Scholar
  40. 40.
    Menezesa CBA, Bonugli-Santosa RC, Miquelettoa PB, Passarinia MRZ, Silvaa CHD, Justoa MR, Leala MR, Fantinatti-Garbogginia F, Oliveiraa VM, Berlinckb RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 165:466–482CrossRefGoogle Scholar
  41. 41.
    Murray SA, Garby T, Hoppenrath M, Neilan BA (2012) Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata). PLoS ONE 7:e38253PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Nagahama T, Hamamoto M, Nakase T, Horikoshi K (1999) Kluyveromyces nonfermentans sp. nov., a new yeast species isolated from the deep sea. Int J Syst Bacteriol 49(Pt 4):1899–1905CrossRefPubMedGoogle Scholar
  43. 43.
    Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370CrossRefPubMedGoogle Scholar
  44. 44.
    Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26CrossRefGoogle Scholar
  45. 45.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 4:495–522CrossRefPubMedGoogle Scholar
  47. 47.
    Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA (2005) The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7:1413–1425CrossRefPubMedGoogle Scholar
  48. 48.
    Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152CrossRefPubMedGoogle Scholar
  49. 49.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Schmitt S, Hentschel U, Taylor MW (2012) Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia 687:341–351CrossRefGoogle Scholar
  52. 52.
    Scott FJ, Wetherbee R, Kraft GT (1984) The morphology and development of some prominently stalked southern Australian Halymeniaceae (Cryptonemiales, Rhodophyta). II. The sponge-associated genera Thamnoclonium Kuetzing and Codiophyllum Gray. J Phycol 20:286–295CrossRefGoogle Scholar
  53. 53.
    Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524CrossRefPubMedGoogle Scholar
  54. 54.
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31CrossRefPubMedGoogle Scholar
  55. 55.
    Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2006) Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual isotope-labeling techniques. J Exp Mar Bio Ecol 336:110–119CrossRefGoogle Scholar
  56. 56.
    Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130CrossRefPubMedGoogle Scholar
  57. 57.
    Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS (2013) ‘Sponge-specific’ bacteria are widespread (but rare) in diverse marine environments. ISME J 7:438–443PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Teodoro AC, Duleba W, Gubitoso S, Prada SM, Lamparelli CC, Bevilacqua JE (2010) Analysis of foraminifera assemblages and sediment geochemical properties to characterise the environment near Araca and Saco da Capela domestic sewage submarine outfalls of Sao Sebastiao Channel, Sao Paulo State, Brazil. Mar Pollut Bull 60:536–553CrossRefPubMedGoogle Scholar
  60. 60.
    Thirunavukkarasu N, Suryanarayanan T, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55:37–46CrossRefGoogle Scholar
  61. 61.
    Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080CrossRefPubMedGoogle Scholar
  62. 62.
    Vogel G (2008) The inner livers of sponges. Science 320:1028–1030CrossRefPubMedGoogle Scholar
  63. 63.
    Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Leeuwenhoek 93:163–174CrossRefPubMedGoogle Scholar
  64. 64.
    Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082PubMedCentralPubMedGoogle Scholar
  65. 65.
    Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Xia X-K, Liu C-H, Yuan W-P, Wang X-J, Meng X-M, Zhang M-S, She Z-G, Lin Y-C (2009) The secondary metabolites of the mangrove endophytic fungi ZZF13 and Guignardia sp. 4382 from the South China Sea. Zhong Yao Cai 32:1385–1387PubMedGoogle Scholar
  67. 67.
    Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Yu Z, Zhang B, Sun W, Zhang F, Li Z (2013) Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers 58:127–141CrossRefGoogle Scholar
  69. 69.
    Zhang X, Sun Y, Bao J, He F, Xu X, Qi S (2012) Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 336:122–130CrossRefPubMedGoogle Scholar
  70. 70.
    Zhou K, Zhang X, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol 62:644–654CrossRefPubMedGoogle Scholar
  71. 71.
    Zulkifly S, Hanshew A, Young EB, Lee P, Graham ME, Piotrowski M, Graham LE (2012) The epiphytic microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyta, Cladophorales). Am J Bot 99:1541–1552CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Liming He
    • 1
  • Fang Liu
    • 1
  • Valliappan Karuppiah
    • 1
  • Yi Ren
    • 2
  • Zhiyong Li
    • 1
  1. 1.Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Majorbio CompanyShanghaiPeople’s Republic of China

Personalised recommendations