Advertisement

Microbial Ecology

, Volume 67, Issue 2, pp 358–368 | Cite as

Kinetic Modelling and Characterization of Microbial Community Present in a Full-Scale UASB Reactor Treating Brewery Effluent

  • Abimbola M. EnitanEmail author
  • Sheena KumariEmail author
  • Feroz M. Swalaha
  • J. Adeyemo
  • Nishani Ramdhani
  • Faizal Bux
Environmental Microbiology

Abstract

The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60–69 % of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K B) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R 2 = 0.957) which could be used for optimizing the reactor performance.

Keywords

Chemical Oxygen Demand Biogas Total Suspended Solid Chemical Oxygen Demand Removal Granular Sludge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge South African Breweries (SAB) for their continuous support for this study and the Durban University of Technology for the financial and laboratory support.

References

  1. 1.
    Parawira W, Kudita I, Nyandoroh MG, Zvauya R (2005) A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem 40:593–599CrossRefGoogle Scholar
  2. 2.
    Appels L, Baeyens J, Degréve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781CrossRefGoogle Scholar
  3. 3.
    Mirzoyan N, Parnes S, Singer A, Tal Y, Sowers K, Gross A (2008) Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture 279:35–41. doi: 10.1016/j.aquaculture.2008.04.008 CrossRefGoogle Scholar
  4. 4.
    Amani T, Nosrati M, Mousavi SM, Kermanshahi RK (2011) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int J Environ Sci Tech 8:83–96CrossRefGoogle Scholar
  5. 5.
    Hulshoff L, Lens P, Castro S, Lettinga G (2004) Anaerobic sludge granulation. Water Res 38:1376–1389CrossRefGoogle Scholar
  6. 6.
    Crocetti G, Murto M, Björnsson L (2006) An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). J Microbiol Methods 65:194–201CrossRefPubMedGoogle Scholar
  7. 7.
    Chulhwan P, Chunyeon L, Sangyong K, Yu C, Howard CH (2005) Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. J Biosci Bioeng 100:164–167CrossRefGoogle Scholar
  8. 8.
    Mumme J, Linke B, Tolle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101:592–599CrossRefPubMedGoogle Scholar
  9. 9.
    Batstone DJ, Keller J, Blackall LL (2004) The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Res 38:1390–1404CrossRefPubMedGoogle Scholar
  10. 10.
    Yu Y, Lee C, Hwang S (2004) Analysis of community structure in anaerobic processes using a quantitative real-time PCR method. Proceedings of the 10th Anaerobic Digestion Conference, Montréal, Canada., pp. 459-465Google Scholar
  11. 11.
    Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic reactors. Water Res 36:3203–3210CrossRefPubMedGoogle Scholar
  12. 12.
    Ziganshin A, Schmidt T, Scholwin F, Il’inskaya O, Harms H, Kleinsteuber S (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89:2039–2052. doi: 10.1007/s00253-010-2981-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Keyser M, Witthuhn RC, Lamprecht C, Coetzee MPA, Britz TJ (2006) PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol 29:77–84. doi: 10.1016/j.syapm.2005.06.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Diaz EE, Stams AJM, Amils R, Sanz JL (2006) Phenotyic properties and microbial diversity of methanogenic granules from a full scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Env Microbiol 72:4942–4949CrossRefGoogle Scholar
  15. 15.
    McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol 2:225–245CrossRefGoogle Scholar
  16. 16.
    Zhang L, Sun Y, Guo D, Wu Z, Jiang D (2012) Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor. Afr J Microbiol Res 6444–6453Google Scholar
  17. 17.
    Pontes RFF, Pinto JM (2006) Analysis of integrated kinetic and flow models for anaerobic digesters. Chem Eng J 122:65–80. doi: 10.1016/j.cej.2006.02.018 CrossRefGoogle Scholar
  18. 18.
    Acharya BK, Mohana S, Madamwar D (2008) Anaerobic treatment of distillery spent wash-A study on upflow anaerobic fixed film bioreactor. Bioresour Technol 99:4621–4626CrossRefPubMedGoogle Scholar
  19. 19.
    Yetilmezsoy K (2012) Integration of kinetic modeling and desirability function approach for multi-objective optimization of UASB reactor treating poultry manure wastewater. Bioresour Technol 118(118):189–101Google Scholar
  20. 20.
    Batstone D, Keller J, Angelidaki I, Kalyhuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA Anaerobic Digestion Model No.1 (ADM1). Water Sci Technol 45:65–73PubMedGoogle Scholar
  21. 21.
    Parsamehr M (2012) Modeling and analysis of a UASB reactor. Luleå University of TechnologyGoogle Scholar
  22. 22.
    Yetilmezsoy K, Sakar S (2008) Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. J Hazard Mater 153:532–543. doi: 10.1016/j.jhazmat.2007.08.087 CrossRefPubMedGoogle Scholar
  23. 23.
    Debik E, Coskun T (2009) Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modelling. Bioresour Technol 100:2777–2782CrossRefPubMedGoogle Scholar
  24. 24.
    Acharya BK, Pathak H, Mohan S, Shouche Y, Singh V, Madamwar D (2011) Kinetic modelling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash. Water Res 45:4248–4259CrossRefPubMedGoogle Scholar
  25. 25.
    Turkdogan-Aydinol FI, Yetilmezsoy K (2010) A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J Hazard Mater 182:460–471. doi: 10.1016/j.jhazmat.2010.06.054 CrossRefPubMedGoogle Scholar
  26. 26.
    APHA–AWWA–WPCF (1998) Standard methods for the examination of water and wastewater. 20th ed. Washington, DC, USA. American Public Health Association/American Water Works Association/Water Environment FederationGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  28. 28.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedCentralPubMedGoogle Scholar
  29. 29.
    Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16 s rRNA gene analysis. Microbiology 144:2655–2665CrossRefPubMedGoogle Scholar
  30. 30.
    Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530CrossRefPubMedGoogle Scholar
  31. 31.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Kincannon DF, Stover EL (1982) Design methodology for fixed film reaction—RBCs and biological towers. Pergamon, New YorkGoogle Scholar
  33. 33.
    Krzysztof Z, Frac M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11:4127Google Scholar
  34. 34.
    Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kovacik WP, Scholten JCM, Culley D, Hickey R, Zhang W, Brockman FJ (2010) Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology 156:2418–2427. doi: 10.1099/mic.0.036715-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Jupraputtasri W, Boonapatcharoen N, Cheevadhanarak S, Chaiprasert P, Tanticharoen M, Techkarnjanaruk S (2005) Use of an alternative Archaea-specific probe for methanogen detection. J Microbiol Methods 61:95–104. doi: 10.1016/j.mimet.2004.11.017 CrossRefPubMedGoogle Scholar
  37. 37.
    Raskin L, Stromley JM, Rittmann BE, Stah DA (1994) Group specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H (2001) In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749. doi: 10.1128/aem.67.12.5740-5749.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Gomec CY, Letsiou I, Ozturk I, Eroglu V, Wilderer PA (2008) Identification of Archaeal population in the granular sludge of an UASB reactor treating sewage at low temperatures. J Environ Sci Health Part A 43:1504–1510CrossRefGoogle Scholar
  40. 40.
    Vavilin VA, Qu X, Mazeas L, Lemunier M, Duquennoi C, He P, Bouchez T (2008) Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94:593–605. doi: 10.1007/s10482-008-9279-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Castro H, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida everglades. Appl Environ Microbiol 70:6559–6568PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Cardinali-Rezende J, Debarry R, Colturato LDB, Carneiro E, Chartone-Souza E, Nascimento AA (2009) Molecular identification and dynamics of microbial communities in reactor treating organic household waste. Appl Microbiol Biotechnol 84:777–789. doi: 10.1007/s00253-009-2071-z CrossRefPubMedGoogle Scholar
  43. 43.
    Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov, a novel hydrogenotrophic methanogen from Shengli Oilfields. Appl Environ Microbiol 77:5212–5219PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759–763CrossRefPubMedGoogle Scholar
  45. 45.
    Kampmann K, Ratering S, Baumann R, Schmidt M, Zerr W, Schnell S (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413CrossRefPubMedGoogle Scholar
  46. 46.
    Smith JM, Castro H, Ogram A (2007) Structure and function of methanogens along a short-term restoration chronosequence in the Florida Everglades [down-pointing small open triangle. Appl Environ Microbiol 73:4135–4141PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. doi: 10.1128/AEM.00489-06 PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Ferry J (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hill, New YorkCrossRefGoogle Scholar
  49. 49.
    McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II. Microbial population dynamics. Water Res 35:1817–1827. doi: 10.1016/S0043-1354(00)00438-3 CrossRefPubMedGoogle Scholar
  50. 50.
    Delbès C, Moletta R, Godon J-J (2001) Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digester ecosystem. FEMS Microbiol Ecol 35:19–26CrossRefPubMedGoogle Scholar
  51. 51.
    Wikström T, Nordmark D, Pelkonen M, Lagerkvist A (2012) Fluorescent in situ hybridization technique in anaerobic process studies. In: Lagerkvist A (ed) Abstract proceedings of 7th Intercontinental Landfill Research Symposium. Luleå Tekniska Universitet, Sunderbyn, Luleå, SwedenGoogle Scholar
  52. 52.
    Pandian M, H-H NGO, Pazhaniappan S (2011) Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater. J Water Sustain 1:301–312Google Scholar
  53. 53.
    Kapdan IK, Erten B (2007) Anaerobic treatment of saline wastewater by Halanaerobium lacurosei. Process Biochem 42:449–453CrossRefGoogle Scholar
  54. 54.
    Ahn JH, Forster CF (2000) Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Process Biochem 36:19–23CrossRefGoogle Scholar
  55. 55.
    Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, vol 8. Wiley, London, England, pp 207–248Google Scholar
  56. 56.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedCentralPubMedGoogle Scholar
  57. 57.
    Daims H, Bruhl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444CrossRefPubMedGoogle Scholar
  58. 58.
    Sponza D, Uluköy A (2008) Kinetic of carbonaceous substrate in an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manag 86:121–131CrossRefGoogle Scholar
  59. 59.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abimbola M. Enitan
    • 1
    • 2
    Email author
  • Sheena Kumari
    • 1
    Email author
  • Feroz M. Swalaha
    • 2
  • J. Adeyemo
    • 3
  • Nishani Ramdhani
    • 1
  • Faizal Bux
    • 1
  1. 1.Institute for Water and Wastewater TechnologyDurban University of TechnologyDurbanSouth Africa
  2. 2.Department of Biotechnology and Food TechnologyDurban University of TechnologyDurbanSouth Africa
  3. 3.Department of Civil Engineering and SurveyingDurban University of TechnologyDurbanSouth Africa

Personalised recommendations