Advertisement

Microbial Ecology

, Volume 67, Issue 2, pp 242–244 | Cite as

Improved Bacteriophage Genome Data is Necessary for Integrating Viral and Bacterial Ecology

  • Kyle BibbyEmail author
Short Commentary

Abstract

The recent rise in “omics”-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases—currently, only 0.001 % of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

Keywords

Viral Diversity Bacteriophage Genome Metagenomic Dataset Bacterial Ecology Viral Metagenomics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci 96:2192–2197. doi: 10.1073/pnas.96.5.2192 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Rohwer F (2003) Global phage diversity. Cell 113: 141. doi: http://dx.doi.org/ 10.1016/S0092-8674(03)00276-9
  3. 3.
    Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Micro 5:801–812. doi: 10.1038/nrmicro1750 CrossRefGoogle Scholar
  4. 4.
    Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefPubMedGoogle Scholar
  5. 5.
    Shapiro OH, Kushmaro A, Brenner A (2009) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336CrossRefPubMedGoogle Scholar
  6. 6.
    Miao EA, Miller SI (1999) Bacteriophages in the evolution of pathogen–host interactions. Proc Natl Acad Sci 96:9452–9454. doi: 10.1073/pnas.96.17.9452 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedCentralPubMedGoogle Scholar
  8. 8.
    Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184:4529–4535. doi: 10.1128/jb.184.16.4529-4535.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, Furman M, Jamindar S, Nasko DJ (2012) VIROME: a standard operating procedure for analysis of viral metagenome sequences. Standards in Genomic Sciences 6. doi:  10.4056/sigs.2945051
  10. 10.
    Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494:357–360, http://www.nature.com/nature/journal/v494/n7437/abs/nature11921.html—supplementary-informationCrossRefPubMedGoogle Scholar
  11. 11.
    Allen LZ, Ishoey T, Novotny MA, McLean JS, Lasken RS, Williamson SJ (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6:e17722. doi: 10.1371/journal.pone.0017722 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Rosario K, Duffy S, Breitbart M (2009) Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 90:2418–2424. doi: 10.1099/vir.0.012955-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Ogilvie LA, Bowler LD, Caplin J, Dedi C, Diston D, Cheek E, Taylor H, Ebdon JE, Jones BV (2013) Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 4. doi:  10.1038/ncomms3420
  14. 14.
    Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D'haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J-F, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H-P, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of bacteria and Archaea. Nature 462:1056–1060. doi: 10.1038/nature08656 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Computational and Systems BiologyUniversity of Pittsburgh Medical SchoolPittsburghUSA

Personalised recommendations