Microbial Ecology

, Volume 67, Issue 1, pp 167–176 | Cite as

Shedding Light on Microbial Predator–Prey Population Dynamics Using a Quantitative Bioluminescence Assay

  • Hansol Im
  • Dasol Kim
  • Cheol-Min Ghim
  • Robert J. Mitchell
Physiology and Biotechnology


This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the “shutting-off” of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10–20 led to approximately 5 % of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15 % lysis. Consequently, we developed a modified Lotka–Volterra predator–prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs.


Prey Population Cyan Fluorescent Protein Prey Concentration Luciferase Protein Prey Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Creativity and Innovation Project as funded by the Ulsan National Institute of Science and Technology (UNIST) (Grant #1.120051.01) and by the National Research Foundation of Korea through the Ministry of Education, Science and Technology (Grant 2011–0000886).


  1. 1.
    Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54(Pt 5):1439–1452. doi: 10.1099/ijs.0.02978-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50(Pt 1):219–224CrossRefPubMedGoogle Scholar
  3. 3.
    Davidov Y, Huchon D, Koval SF, Jurkevitch E (2006) A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol 8(12):2179–2188. doi: 10.1111/j.1462-2920.2006.01101.x CrossRefPubMedGoogle Scholar
  4. 4.
    Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microb 66(6):2365–2371. doi: 10.1128/Aem.66.6.2365-2371.2000 CrossRefGoogle Scholar
  5. 5.
    Rogosky AM, Moak PL, Emmert EAB (2006) Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol 52(2):81–85. doi: 10.1007/s00284-005-0038-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen H, Athar R, Zheng G, Williams HN (2011) Prey bacteria shape the community structure of their predators. ISME J 5(8):1314–1322. doi: 10.1038/ismej.2011.4 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV (2012) Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PloS One 7(6):e38204. doi: 10.1371/journal.pone.0038204 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Williams HN, Turng BF, Kelley JI (2009) Survival response of Bacteriovorax in surface biofilm versus suspension when stressed by extremes in environmental conditions. Microbial Ecol 58(3):474–484. doi: 10.1007/s00248-009-9499-7 CrossRefGoogle Scholar
  9. 9.
    Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, Davis-Richardson AG, Crabb DB, Rosario-Passapera R, Giongo A, Triplett EW, Kent AD (2013) Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ Microbiol. doi: 10.1111/1462-2920.12131 PubMedGoogle Scholar
  10. 10.
    Van Essche M, Sliepen I, Loozen G, Van Eldere J, Quirynen M, Davidov Y, Jurkevitch E, Boon N, Teughels W (2009) Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep 1(4):228–233. doi: 10.1111/j.1758-2229.2009.00034.x CrossRefPubMedGoogle Scholar
  11. 11.
    Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7(11):1016–1022PubMedGoogle Scholar
  12. 12.
    Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PloS One 8(4):e61608. doi: 10.1371/journal.pone.0061608 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71(7):4044–4051. doi: 10.1128/Aem.71.7.4044-4051.2005 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Kadouri D, Venzon NC, O'Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73(2):605–614. doi: 10.1128/AEM.01893-06 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ (2013) Patterning bacterial communities on epithelial cells. PLoS One 8(6):e67165. doi: 10.1371/journal.pone.0067165 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2(8):669–675. doi: 10.1038/Nrmicro959 CrossRefPubMedGoogle Scholar
  17. 17.
    Boileau MJ, Clinkenbeard KD, Iandolo JJ (2011) Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can J Vet Res 75(4):285–291PubMedCentralPubMedGoogle Scholar
  18. 18.
    Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, Fenton AK, Barrow P, Sockett RE (2011) Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 77(16):5794–5803. doi: 10.1128/Aem.00426-11 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Varon M, Drucker I, Shilo M (1969) Early effects of Bdellovibrio infection on the syntheses of protein and RNA of host bacteria. Biochem Biophys Res Commun 37(3):518–525CrossRefPubMedGoogle Scholar
  20. 20.
    Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303(5658):689–692. doi: 10.1126/science.1093027 CrossRefPubMedGoogle Scholar
  21. 21.
    Fenton AK, Lambert C, Wagstaff PC, Sockett RE (2010) Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J Bacteriol 192(5):1299–1311. doi: 10.1128/Jb.01157-09 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lerner TR, Lovering AL, Bui NK, Uchida K, Aizawa S, Vollmer W, Sockett RE (2012) Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog 8(2):e1002524. doi: 10.1371/journal.ppat.1002524 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Lambert C, Sockett RE (2013) Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiol Lett 340(2):109–116. doi: 10.1111/1574-6968.12075 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “House of Biofilm cells”. J Bacteriol 189(22):7945–7947. doi: 10.1128/Jb.00858-07 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Lee JH, Mitchell RJ, Gu MB (2004) Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions. Biosens Bioelectron 20(3):475–481. doi: 10.1016/j.bios.2004.02.019 CrossRefPubMedGoogle Scholar
  26. 26.
    Lee S, Mitchell RJ (2012) Detection of toxic lignin hydrolysate-related compounds using an inaA::luxCDABE fusion strain. J Biotechnol 157(4):598–604. doi: 10.1016/j.jbiotec.2011.06.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Yaguchi T, Lee S, Choi WS, Kim D, Kim T, Mitchell RJ, Takayama S (2010) Micropatterning bacterial suspensions using aqueous two phase systems. Analyst 135(11):2848–2852. doi: 10.1039/c0an00464b CrossRefPubMedGoogle Scholar
  28. 28.
    Yaguchi T, Dwidar M, Byun CK, Leung B, Lee S, Cho YK, Mitchell RJ, Takayama S (2012) Aqueous two-phase system-derived biofilms for bacterial interaction studies. Biomacromolecules 13(9):2655–2661. doi: 10.1021/bm300500y CrossRefPubMedGoogle Scholar
  29. 29.
    Tomlin KL, Clark SRD, Ceri H (2004) Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Methods 57(1):95–106. doi: 10.1016/j.mimet.2003.12.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Gil GC, Mitchell RJ, Chang ST, Gu MB (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15(1–2):23–30PubMedGoogle Scholar
  31. 31.
    Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic-control of bacterial bioluminescence. Adv Microbial Physiol 34:1–67. doi: 10.1016/S0065-2911(08)60027-2 CrossRefGoogle Scholar
  32. 32.
    Chatterjee J, Meighen EA (1995) Biotechnological applications of bacterial bioluminescence (Lux) genes. Photochem Photobiol 62(4):641–650. doi: 10.1111/j.1751-1097.1995.tb08711.x CrossRefGoogle Scholar
  33. 33.
    Varon M (1979) Selection of predation-resistant bacteria in continuous culture. Nature 277(5695):386–388CrossRefGoogle Scholar
  34. 34.
    Varon M, Zeigler BP (1978) Bacterial predator–prey interaction at low prey density. Appl Environ Microbiol 36(1):11–17PubMedCentralPubMedGoogle Scholar
  35. 35.
    Lambert C, Smith MCM, Sockett RE (2003) A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5(2):127–132CrossRefPubMedGoogle Scholar
  36. 36.
    Mitchell RJ, Hong HN, Gu MB (2006) Induction of kanamycin resistance gene of plasmid pUCD615 by benzoic acid and phenols. J Microbiol Biotech 16(7):1125–1131Google Scholar
  37. 37.
    Mitchell RJ, Gu MB (2011) Use of protein stability to develop dual luciferase toxicity bioreporter strains. Biotech Bioproc E 16(6):1254–1261. doi: 10.1007/s12257-011-0184-6 CrossRefGoogle Scholar
  38. 38.
    Mitchell RJ, Ahn JM, Gu MB (2005) Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J Microbiol Biotech 15(1):48–54Google Scholar
  39. 39.
    Frackman S, Anhalt M, Nealson KH (1990) Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. J Bacteriol 172(10):5767–5773PubMedCentralPubMedGoogle Scholar
  40. 40.
    Monnappa AK, Dwidar M, Mitchell RJ (2013) Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. Soil Biol Biochem 57:427–435. doi: 10.1016/j.soilbio.2012.09.010 CrossRefGoogle Scholar
  41. 41.
    Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus Gen. et Sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217–248CrossRefPubMedGoogle Scholar
  42. 42.
    Park S, Kim D, Mitchell RJ, Kim T (2011) A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab Chip 11(17):2916–2923. doi: 10.1039/c1lc20230h CrossRefPubMedGoogle Scholar
  43. 43.
    Hobley L, King JR, Sockett RE (2006) Bdellovibrio predation in the presence of decoys: three-way bacterial interactions revealed by mathematical and experimental analyses. Appl Environ Microbiol 72(10):6757–6765. doi: 10.1128/AEM.00844-06 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Fenton AK, Kanna M, Woods RD, Aizawa SI, Sockett RE (2010) Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 192(24):6329–6335. doi: 10.1128/JB.00914-10 PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Varon M, Drucker I, Shilo M (1969) Early effects of Bdellovibrio infection on syntheses of protein and RNA of host bacteria. Biochem Biophys Res Commun 37(3):518–525. doi: 10.1016/0006-291×(69)90946-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Coleman DC (1994) The microbial loop concept as used in terrestrial soil ecology studies. Microbial Ecol 28(2):245–250. doi: 10.1007/Bf00166814 CrossRefGoogle Scholar
  47. 47.
    Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282(5397):2254–2256. doi: 10.1126/science.282.5397.2254 CrossRefPubMedGoogle Scholar
  48. 48.
    Blackburn N, Fenchel T (1999) Modelling of microscale patch encounter by chemotactic protozoa. Protist 150(3):337–343CrossRefPubMedGoogle Scholar
  49. 49.
    Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70(3):817–821PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
  2. 2.Graduate Program of Applied PhysicsUlsan National Institute of Science and TechnologyUlsanSouth Korea

Personalised recommendations