Microbial Ecology

, Volume 68, Issue 1, pp 24–34 | Cite as

Bacterial Signaling Ecology and Potential Applications During Aquatic Biofilm Construction

  • Leticia M. Vega
  • Pedro J. Alvarez
  • Robert J. C. McLeanEmail author


In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.


Quorum Sense Homoserine Lactone Reporter Strain Acidithiobacillus Ferrooxidans Quorum Quenching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the authors' laboratories has been funded by the Environmental Protection Agency (PJJ, RJCM), Norman Hackerman Advanced Research Program (RJCM), and an NSF cooperative agreement (HRD-0450363) (LMV). RJCM would like to thank Clay Fuqua for introducing him to the fascinating world of quorum signaling.


  1. 1.
    van Leeuwenhoek A (1712) A letter from Mr. Anthony Van Leeuwenhoek, F. R. S. containing some further microscopical observations on the animalcula found upon duckweed. Phil Trans 28:160–164CrossRefGoogle Scholar
  2. 2.
    Zobell CE, Allen EC (1935) The significance of marine bacteria in the fouling of submerged surfaces. J Bacteriol 29:239–251PubMedCentralPubMedGoogle Scholar
  3. 3.
    Busscher HJ, Geertsema-Doornbusch GI, Van der Mei HC (1993) On mechanisms of oral microbial adhesion. J Appl Bacteriol 74(Suppl):136S–142SPubMedCrossRefGoogle Scholar
  4. 4.
    Caldwell DE, Lawrence JR (1986) Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 12:299–312PubMedCrossRefGoogle Scholar
  5. 5.
    Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Fletcher M (1977) Effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23:1–6CrossRefGoogle Scholar
  7. 7.
    Hoiby N (1974) Pseudomonas aeruginosa infection in cystic fibrosis. Relationship between mucoid strains of Pseudomonas aeruginosa and the humoral immune response. Acta Path Microbiol Scand Sect B 82:551–558Google Scholar
  8. 8.
    Marshall KC, Stout R, Mitchell R (1971) Mechanisms of the initial events in the sorption of marine bacteria to solid surfaces. J Gen Microbiol 68:337–348CrossRefGoogle Scholar
  9. 9.
    Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transform-IR spectroscopic methods for microbial ecology analysis of bacteria, bacteria–polymer mixtures and biofilms. J Microbiol Methods 4:79–94PubMedCrossRefGoogle Scholar
  10. 10.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  11. 11.
    Potera C (1996) Biofilms invade microbiology. Science 273:1795–1797PubMedCrossRefGoogle Scholar
  12. 12.
    Geesey GG, Mutch R, Costerton JW, Green RB (1978) Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol Oceanogr 23:1214–1223CrossRefGoogle Scholar
  13. 13.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedCentralPubMedGoogle Scholar
  14. 14.
    Cheng KJ, Fay JP, Coleman RN, Milligan LP, Costerton JW (1981) Formation of bacterial microcolonies of feed particles in the rumen. Appl Environ Microbiol 41:298–305PubMedCentralPubMedGoogle Scholar
  15. 15.
    Rittmann BE, Crawford L, Tuck CK, Namkung E (1986) In situ determination of kinetic parameters for biofilms isolation and characterization of oligotrophic biofilms. Biotechnol Bioeng 28:1753–1760PubMedCrossRefGoogle Scholar
  16. 16.
    Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59:827–831Google Scholar
  17. 17.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  18. 18.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Costerton JW, Lam J, Lam K, Chan R (1983) The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev Infect Dis 5:S867–S873PubMedCrossRefGoogle Scholar
  20. 20.
    Shapiro JA (1992) Pattern and control in bacterial colony development. Sci Prog 76:399–424PubMedGoogle Scholar
  21. 21.
    Ramsey MM, Whiteley M (2009) Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A 106:1578–1583PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567PubMedCentralPubMedGoogle Scholar
  23. 23.
    Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95PubMedCrossRefGoogle Scholar
  24. 24.
    Geesey GG, White DC (1990) Determination of bacterial growth and activity at solid–liquid interfaces. Annu Rev Microbiol 44:579–602PubMedCrossRefGoogle Scholar
  25. 25.
    Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446PubMedCentralPubMedGoogle Scholar
  26. 26.
    Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261PubMedCrossRefGoogle Scholar
  27. 27.
    Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19PubMedCentralPubMedGoogle Scholar
  28. 28.
    Li YH, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713PubMedCentralPubMedGoogle Scholar
  30. 30.
    Christensen BB, Sternberg C, Andersen JB, Eberl L, Møller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255PubMedCentralPubMedGoogle Scholar
  31. 31.
    LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499PubMedCentralPubMedGoogle Scholar
  32. 32.
    Lawrence JR, Scharf B, Packroff G, Neu TR (2003) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 44:199–207CrossRefGoogle Scholar
  33. 33.
    Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126PubMedCrossRefGoogle Scholar
  34. 34.
    Kay MK, Erwin TC, McLean RJC, Aron GM (2011) Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed biofilm communities. Appl Environ Microbiol 77:821–829PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Weber MM, French CL, Barnes MB, Siegele DA, McLean RJC (2010) A previously uncharacterized gene, yjfO (bsmA) influences Escherichia coli biofilm formation and stress response. Microbiology 156:139–147PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lujan AM, Macia MD, Yang L, Molin S, Oliver A, Smania AM (2011) Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators. PLOS One 6:e27842PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Allison DG, Gilbert P (1995) Modification by surface association of antimicrobial susceptibility of bacterial populations. J Ind Microbiol 15:311–317PubMedCrossRefGoogle Scholar
  38. 38.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  39. 39.
    Adams JL, McLean RJC (1999) The impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287PubMedCentralPubMedGoogle Scholar
  40. 40.
    Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison VM, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  42. 42.
    Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56PubMedCrossRefGoogle Scholar
  43. 43.
    Whiteley M, Ott JR, Weaver EA, McLean RJC (2001) Effects of community composition and growth rate on aquifer biofilm bacteria and their susceptibility to betadine disinfection. Environ Microbiol 3:43–52PubMedCrossRefGoogle Scholar
  44. 44.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  45. 45.
    Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304PubMedCrossRefGoogle Scholar
  47. 47.
    Burrows LL (2005) Weapons of mass retraction. Mol Microbiol 57:878–888PubMedCrossRefGoogle Scholar
  48. 48.
    Petrova OE, Sauer K (2012) Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A 109:16690–16695PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedCentralPubMedGoogle Scholar
  50. 50.
    Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio 1:e00202–e00210PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the luxR-luxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedCentralPubMedGoogle Scholar
  52. 52.
    Chen X, Schauder S, Portier N, Van Dorsselaer A, Pelczar I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  53. 53.
    Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Mashburn-Warren LM, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong P, Williams P, Zhang LH (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343PubMedCrossRefGoogle Scholar
  57. 57.
    Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  59. 59.
    Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  60. 60.
    McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally-occurring biofilms. FEMS Microbiol Lett 154:259–263PubMedCrossRefGoogle Scholar
  61. 61.
    Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178:435–440PubMedCentralPubMedGoogle Scholar
  62. 62.
    Stickler DJ, Morris NS, McLean RJC, Fuqua C (1998) Biofilms on indwelling urinary catheters produce quorum-sensing signal molecules in situ and in vitro. Appl Environ Microbiol 64:3486–3490PubMedCentralPubMedGoogle Scholar
  63. 63.
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764PubMedCrossRefGoogle Scholar
  64. 64.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298PubMedCrossRefGoogle Scholar
  65. 65.
    Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277PubMedCrossRefGoogle Scholar
  66. 66.
    Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JAJ, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383PubMedCrossRefGoogle Scholar
  67. 67.
    Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kolodin-Gai I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629CrossRefGoogle Scholar
  72. 72.
    Kolodin-Gai I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149:684–692CrossRefGoogle Scholar
  73. 73.
    Dunn KA, McLean RJC, Upchurch GR Jr, Folk RL (1997) Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25:1119–1122CrossRefGoogle Scholar
  74. 74.
    Walter MR, Desmarais D, Farmer JD, Hinman NW (1996) Lithofacies and biofacies of Mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia. Palaios 11:497–518PubMedCrossRefGoogle Scholar
  75. 75.
    Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedCentralPubMedGoogle Scholar
  76. 76.
    Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedCrossRefGoogle Scholar
  77. 77.
    Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 9:2486–2495PubMedCrossRefGoogle Scholar
  78. 78.
    Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061PubMedCrossRefGoogle Scholar
  79. 79.
    Bjarnsholt T, Jensen PO, Rasmussen MA, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880PubMedCrossRefGoogle Scholar
  80. 80.
    Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161PubMedCrossRefGoogle Scholar
  82. 82.
    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711PubMedCrossRefGoogle Scholar
  83. 83.
    Zhu H, Shen YL, Wei DZ, Zhu JW (2008) Inhibition of quorum sensing in Serratia marcescens H30 by molecular regulation. Curr Microbiol 56:645–650PubMedCrossRefGoogle Scholar
  84. 84.
    Wang YJ, Leadbetter JR (2005) Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl Environ Microbiol 71:1291–1299PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    McLean RJC, Pierson LS, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360PubMedCrossRefGoogle Scholar
  86. 86.
    Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193:3871–3878PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Zhu J, Beaber JW, Moré MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405PubMedCentralPubMedGoogle Scholar
  88. 88.
    Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Andersen JB, Sternberg C, Poulsen LK, Bjørn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246PubMedCentralPubMedGoogle Scholar
  90. 90.
    Jacobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Hoiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78:2410-2421Google Scholar
  91. 91.
    Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through the use of defined substrates. Science 272:1655–1658PubMedCrossRefGoogle Scholar
  93. 93.
    McLean RJC, Bryant SA, Vattem DA, Givskov M, Rasmussen TB, Balaban N (2008) Detection in vitro of quorum-sensing molecules and their inhibitors. In: Balaban N (ed) The control of biofilm infections by signal manipulation. Springer, Heidelberg, pp 39–50CrossRefGoogle Scholar
  94. 94.
    Adonizio AL, Downum K, Bennett BC, Mathee K (2006) Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105:427–435PubMedCrossRefGoogle Scholar
  95. 95.
    Vattem DA, Mihalik K, Crixell SH, McLean RJC (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310PubMedCrossRefGoogle Scholar
  96. 96.
    Egan S, James S, Kjelleberg S (2002) Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl Environ Microbiol 68:372–378PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682PubMedCrossRefGoogle Scholar
  98. 98.
    Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52:269–274PubMedCrossRefGoogle Scholar
  99. 99.
    Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S (2006) Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, Valenzuela E Jr, McLean RJC (2012) Indole production promotes Escherichia coli mixed culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol 78:411–419PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Kim C, Kim J, Park HY, McLean RJC, Kim CK, Jeon J, Yi SS, Kim YG, Lee YS, Yoon J (2007) Molecular modeling, synthesis, and screening of new bacterial quorum-sensing antagonists. J Microbiol Biotechnol 17:1598–1606PubMedGoogle Scholar
  102. 102.
    Anand R, Rai N, Thattai M (2013) Interactions among quorum sensing inhibitors. PLOS One 8:e62254PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Vega LM (2013) The impact of nickel on LuxI/LuxR type quorum sensing and biofilm formation on environmental Proteobacterial species. Rice University, HoustonGoogle Scholar
  104. 104.
    Thomas PW, Stone EM, Costello AL, Tierney DL, Fast W (2005) The quorum quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44:7559–7569PubMedCrossRefGoogle Scholar
  105. 105.
    Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 161:293–304PubMedCrossRefGoogle Scholar
  106. 106.
    De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191:461–476PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Petrova OE, Sauer K (2010) The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 192:5275–5288PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Nyholm SV, Stabb EV, Ruby EG, McFall Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci U S A 97:10231–10235PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Schleicher TR, Nyholm SV (2011) Characterizing the host and symbiont proteomes in the association between the bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLOS One 6:e25649PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Kostic AD, Howitt MR, Garrett WS (2013) Exploring host–microbiota interactions in animal models and humans. Gene Dev 27:701–718PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    McLean RJC, Barnes MB, Windham MK, Merchant MM, Forstner MRJ, Fuqua C (2005) Cell–cell influences on bacterial community development in aquatic biofilms. Appl Environ Microbiol 71:8987–8990PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Huang YL, Ki JS, Lee OO, Qian PY (2009) Evidence for the dynamics of acyl homoserine lactone and AHL-producing bacteria during subtidal biofilm formation. ISME J 3:296–304PubMedCrossRefGoogle Scholar
  113. 113.
    McLean RJC, Nickel JC, Cheng KJ, Costerton JW (1988) The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit Rev Microbiol 16:37–79PubMedCrossRefGoogle Scholar
  114. 114.
    Visek WJ (1984) Ammonia: its effects on biological system, metabolic hormones and reproduction. J Dairy Sci 67:481–498PubMedCrossRefGoogle Scholar
  115. 115.
    Kross BC, Ayebo AD, Fuortes LJ (1992) Methemoglobinemia: nitrate toxicity in rural America. Am Fam Physician 46:183–188PubMedGoogle Scholar
  116. 116.
    Gieseke A, Bjerrum L, Wagner M, Amann R (2003) Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ Microbiol 5:355–369PubMedCrossRefGoogle Scholar
  117. 117.
    Van Benthum W-AJ, Derissen BP, van Loosdrecht MCM, Heijnen JJ (1998) Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat. Water Res 32:2009–2018CrossRefGoogle Scholar
  118. 118.
    Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207PubMedCrossRefGoogle Scholar
  119. 119.
    Jackson WA, Morse A, McLamore E, Weisner T, Xia S (2009) Nitrification–denitrification biological treatment of a high-nitrogen waste stream for water-reuse applications. Water Environ Res 81:423–431PubMedCrossRefGoogle Scholar
  120. 120.
    Yang Y, Wang J, Zhu HG, Colvin VL, Alvarez PJ (2012) Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. Environ Sci Technol 46:3433–3441PubMedCrossRefGoogle Scholar
  121. 121.
    Somova LA, Pechurkin NS (2005) Management and control of microbial populations’ development in LSS of missions of different durations. Adv Space Res 35:1621–1625PubMedCrossRefGoogle Scholar
  122. 122.
    Gonzales A, Bellenberg S, Mamani S, Ruiz L, Echeverría A, Soulère L, Doutheau A, Demergasso C, Sand W, Queneau Y, Vera M, Guiliani N (2013) AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 97:3729–3737CrossRefGoogle Scholar
  123. 123.
    Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P, Prosser JI (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl Environ Microbiol 63:2281–2286PubMedCentralPubMedGoogle Scholar
  124. 124.
    De Clippeleir H, Defoirdt T, Vanhaecke L, Vlaeminck S, Carballa M, Verstraete W, Boon N (2011) Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Appl Microbiol Biotechnol 90:1511–1519PubMedCrossRefGoogle Scholar
  125. 125.
    Roy AB, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. Prog Mol Subcell Biol 42:55–86PubMedGoogle Scholar
  128. 128.
    Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555PubMedCrossRefGoogle Scholar
  129. 129.
    Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177:1367–1373PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Leticia M. Vega
    • 1
  • Pedro J. Alvarez
    • 1
  • Robert J. C. McLean
    • 2
    Email author
  1. 1.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA
  2. 2.Department of BiologyTexas State UniversitySan MarcosUSA

Personalised recommendations