Advertisement

Microbial Ecology

, Volume 67, Issue 1, pp 57–65 | Cite as

Defining the Niche of Vibrio parahaemolyticus During Pre- and Post-Monsoon Seasons in the Coastal Arabian Sea

  • A.-S. Rehnstam-HolmEmail author
  • V. Atnur
  • A. Godhe
Microbiology of Aquatic Systems

Abstract

The bacteria Vibrio parahaemolyticus is an important component of coastal ecosystems worldwide, and in recent years, V. parahaemolyticus has caused several cases of food-borne gastroenteritis. However, research investigating which parameters are important in regulating V. parahaemolyticus abundance in tropical areas with relatively stable temperatures and salinity are largely lacking. The objective here was to investigate which environmental forces are driving elevated abundances of V. parahaemolyticus in a tropical oligotrophic coastal area in the Arabian Sea. We analysed a large number of environmental parameters in parallel with cell densities of V. parahaemolyticus and Vibrio spp. Abundance data was obtained using real-time PCR, during two different sampling periods, representative for two distinct seasons. Water temperature and salinity were stable during and between sampling periods, but V. parahaemolyticus abundances were on average six times higher during the first sampling period in December, compared to the second period in February–March. V. parahaemolyticus abundance was found to be positively correlated to inorganic phosphate concentration and copepod abundance. We thus hypothesise that these are important factors regulating V. parahaemolyticus abundance in coastal tropical areas during these periods.

Keywords

Phytoplankton Partial Little Square Dinoflagellate Vibrio Secchi Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Swedish International Development Cooperation Agency (SWE-2006-022), the Swedish Research Council Formas (2007-179) and Swedish Research Links (2006-2462). We thank Maria Asplund for her help with the analyses.

References

  1. 1.
    Kaneko T, Colwell RR (1973) The ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol 113:24–32PubMedCentralPubMedGoogle Scholar
  2. 2.
    Fujino T, Okuno Y, Nakada D, Aoyama A, Fukai K, Mukai T, Ueho T (1953) On the bacteriological examination of shirasu—food poisoning. Med J Osaka Univ 4:299–304Google Scholar
  3. 3.
    Honda T, Iida T (1993) The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysine and related haemolysins. Rev Med Microbiol 4:106–113CrossRefGoogle Scholar
  4. 4.
    Sarkar BL, Nair GB, Banerjee AK, Pal SC (1985) Seasonal distribution of Vibrio parahaemolyticus in fresh water environs and in association with freshwater fishes in Calcutta. Appl Environ Microbiol 49:132–136PubMedCentralPubMedGoogle Scholar
  5. 5.
    Deepanjali AH, Kumar S, Karunasagar I, Karunasagar I (2005) Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Appl Environ Microbiol 71:3575–80PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T (2008) Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 76:1016–1023PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholera. Lancet 361:743–749CrossRefPubMedGoogle Scholar
  8. 8.
    Yu C, Bassler BL, Roseman S (1993) Chemotaxis of the marine bacterium Vibrio furnissii to sugars—a potential mechanism for initiating the chitin catabolic cascade. J Biol Chem 268:9405–9409PubMedGoogle Scholar
  9. 9.
    Thompson FL, Neto AA, EdeO S, Izutsu K, Iida T (2011) Effect of N-acetyl-D-glucosamine on gene expression in Vibrio parahaemolyticus. Microbes Environ 26:61–66CrossRefPubMedGoogle Scholar
  10. 10.
    McCarter LL (1999) The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1:51–57PubMedGoogle Scholar
  11. 11.
    Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264:89–97CrossRefPubMedGoogle Scholar
  12. 12.
    Enos-Berlage JL, Guvener ZT, Keenan CE, MCCarter IL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182CrossRefPubMedGoogle Scholar
  13. 13.
    PdSC S, Destro MT, Franco BDGM, Landgraf M (2010) Correlation between environmental factors and prevalence of Vibrio parahaemolyticus in oysters harvested in the southern coastal area of Sao Paulo state, Brazil. Appl Environ Microbiol 76:1290–1293CrossRefGoogle Scholar
  14. 14.
    Martinez-Urtaza J, Lozano-Leon A, Varela-Pet J, Trinanes J, Pazos Y, Garcia-Martin O (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Appl Environ Microbiol 74:265–274PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Rehnstam-Holm AS, Godhe A, Härnström K, Ragunath P, Saravanan V, Collin B, Karunasagar I, Karunasagar I (2010) Association between phytoplankton and Vibrio spp. along the South West coast of India: a mesocosm experiment. Aquat Microb Ecol 58:127–139CrossRefGoogle Scholar
  16. 16.
    Asplund ME, Rehnstam-Holm AS, Atnus V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A (2011) Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol. doi: 10.1111/j.1462-2920.2011.02545.x PubMedGoogle Scholar
  17. 17.
    Kaneko T, Colwell RR (1975) Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl Microbiol 29:269–274PubMedCentralPubMedGoogle Scholar
  18. 18.
    Sochard MR, Wilson DF, Austin B, Colwell RR (1979) Bacteria associated with the surface and gut of marine copepods. Appl Environ Microbiol 37:750–759PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ganesh EA, Das S, Chandrasekar K, Arun G, Balamurugan S (2010) Monitoring of total heterotrophic bacteria and Vibrio spp. in an aquaculture pond. Curr Res J Biol Sci 2:48–52Google Scholar
  20. 20.
    Urkawa H, Rivera ING (2006) Aquatic environment. In: Thompson FL, Austin B, Swings J (eds) The biology of vibrios. ASM, Washington DC, pp 175–189CrossRefGoogle Scholar
  21. 21.
    Parvathi A, Kumar S, Karunasagar I, Karunasagar I (2004) Detection and enumeration of Vibrio vulnificus in oysters from two estuaries along the south west coast of India using molecular methods. Appl Environ Microbiol 70:6909–13PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Gopal S, Otta KS, Kumar S, Karunasagar I, Nishibuchi M, Karunasagar I (2005) The occurrence of Vibrio species in tropical shrimp culture environments; implication for food safety. Int J Food Microbiol 102:151–159CrossRefPubMedGoogle Scholar
  23. 23.
    Wyrtki K (1973) Physical oceanography of the Indian Ocean. In: Zeitschel B, Gerlach SA (eds) The biology of the Indian Ocean. Springer-Verlag, New York, pp 18–36CrossRefGoogle Scholar
  24. 24.
    Luis AJ, Kawamura H (2004) Air-sea interaction, coastal circulation and primary production in the eastern Arabian Sea: a review. J Oceanogr 60:205–218CrossRefGoogle Scholar
  25. 25.
    Härnström K, Godhe A, Saravanan V, Karunasagar I, Karunasagar I, Rehnstam-Holm AS (2007) Tropic phytoplankton community development—a study of mesocosms inoculated with different life stages. Mar Ecol Prog Ser 346:75–88CrossRefGoogle Scholar
  26. 26.
    Matondkar SGP, Dwivedi RM, Parab SG, Pednekar S, Desa ES, Mascarenhas AAMQ, Raman M, Singh SK (2006) Satellite and ship studies of phytoplankton in the Northeastern Arabian during 2000 – 2006 period. Proceedings of SPIE, vol.6406, 64061IGoogle Scholar
  27. 27.
    Bhattathiri PMA, Pant A, Sawant S, Gauns M, Matondkar SGP, Mahanraju R (1996) Phytoplankton production and chlorophyll distribution in the eastern and central Arabian Sea in 1994–1995. Curr Sci 71:857–862Google Scholar
  28. 28.
    Gandhi N, Singh A, Prakash S, Ramesh R, Raman M, Sheshshayee MS, Shetye S (2011) First direct measurements of N2 fixation during a Trichodesmium bloom in the eastern Arabian Sea. Global Biogeochemical Cycles, 25(GB4014):1-10, doi: 10.1029/2010GB003970 Google Scholar
  29. 29.
    Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, OxfordGoogle Scholar
  30. 30.
    Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, OttawaGoogle Scholar
  31. 31.
    Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194Google Scholar
  32. 32.
    Utermöhl H (1958) Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitt Int Ver Limnol 9:1–38Google Scholar
  33. 33.
    Willén T (1962) Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic. Oikos 13:69–199CrossRefGoogle Scholar
  34. 34.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  35. 35.
    Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I (2008) Quantifying diatom and dinoflagellate biomass in coastal marine sea water samples by real-time PCR. Appl Environ Microbiol 74:7174–7182PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, DePaola A (2007) Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol 73:5840–5847PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004) Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl Environ Microbiol 70:4103–4110PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. Soc Ind Appl Math J Sci Stat Comput 5:735–743CrossRefGoogle Scholar
  39. 39.
    Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar Ecol Prog Ser 340:121–138CrossRefGoogle Scholar
  40. 40.
    Collin B, Rehnstam-Holm AS (2011) Occurrence and potential pathogenesis of Vibrio cholera, Vibrio parahaemolyticus and Vibrio vulnicus on the South Coast of Sweden. FEMS Microb Ecol. doi: 10.1111/j.1574-6941.2011.01157.x Google Scholar
  41. 41.
    Oberbeckmann S, Wichels A, Wiltshire KH, Gerdts G (2011) Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle. Anton Leeuw J Microbiol. doi: 10.1007/s10482-011-9586-x Google Scholar
  42. 42.
    Hsieh JL, Fries JS, Noble RT (2007) Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl 17:S102–109CrossRefGoogle Scholar
  43. 43.
    Parveen S, Hettiarachchi AK, Bowers JC, Jones JL, Tamplin ML, McKay R, Beatty W, Brohawn K, DaSilva LV, DePaola A (2008) Seasonal distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. Int J Food Microbiol 128:354–361CrossRefPubMedGoogle Scholar
  44. 44.
    Blackwell KD, Oliver JD (2008) The ecology of Vibrio vulnificus, Vibrio cholera, and Vibrio parahaemolyticus in North Carolina estuaries. J Microbiol 46:146–153CrossRefPubMedGoogle Scholar
  45. 45.
    Kelleberg S, Albertson N, Flärdh K, Holmquist L, Jouper-Jaan Å, Marouga R, Östling J, Svenblad B, Weichart D (1993) How do non-differentiating bacteria adapt to starvation? Ant Van Leeuwenhoek 63:333–341CrossRefGoogle Scholar
  46. 46.
    McCarter LL, Silverman M (1987) Phosphate regulation of gene expression in Vibrio parahaemolyticus. J Bacteriol 169:3441–3449PubMedCentralPubMedGoogle Scholar
  47. 47.
    Deter J, Lozach S, Véron A, Chollet J, Derrien A, Hervio-Heath D (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937CrossRefGoogle Scholar
  48. 48.
    Johnson CN, Flowers AR, Norica NF III, Zimmerman AM, Bowers JC, DePaolaA GDJ (2010) Relationship between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol 76:7076–7084PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Watkins WD, Cabelli VJ (1985) Effect of fecal pollution on Vibrio parahaemolyticus densities in an estuarine environment. Appl Environ Microbiol 49:1307–1313PubMedCentralPubMedGoogle Scholar
  50. 50.
    Duan J, Su YC (2005) Occurrence of Vibrio parahaemolyticus in two Oregon oyster-growing bays. J Food Sci 70(1):58–63CrossRefGoogle Scholar
  51. 51.
    Mourino-Pérez RR, Worden AZ, Azam F (2003) Growth of Vibrio cholerae O1 in red tide waters off California. Appl Environ Microbiol 69:6923–6931PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Eiler A, Johansson M, Bertilsson S (2006) Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Appl Environ Microbiol 72:6004–6011PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Islam MS, Rahim Z, Alam MJ, Begum S, Moniruzzaman SM, Umeda A, Amako K, Albert MJ, Sack RB, Huq A, Colwell RR (1999) Association of Vibrio cholerae O1 with the cyanobacterium, Anabaena sp., elucidated by polymerase chain reaction and transmission electron microscopy. Trans R Soc Trop Med Hyg 93:36–40CrossRefPubMedGoogle Scholar
  54. 54.
    Dilip V, Kumar HS, Kumar Y, Karunasagar I, Nishibuchi M, Karunasagar I (2003) Application of polymerase chain reaction for the detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment. Lett Appl Microbiol 36:423–427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Aquatic Biology and ChemistryKristianstad UniversityKristianstadSweden
  2. 2.Department of Marine EcologyUniversity of GothenburgGothenburgSweden
  3. 3.Department of Fishery Microbiology, College of FisheriesKarnataka Veterinary Animal and Fisheries Sciences UniversityMangaloreIndia

Personalised recommendations