Microbial Ecology

, Volume 67, Issue 2, pp 430–442 | Cite as

Trophic Structure of Amoeba Communities Near Roots of Medicago sativa After Contamination with Fuel Oil No. 6

  • Sandra Cortés-Pérez
  • Salvador Rodríguez-Zaragoza
  • Ma. Remedios Mendoza-López
Soil Microbiology

Abstract

Root exudation increases microbial activity, selecting bacterial and fungal communities that metabolize organic matter such as hydrocarbons. However, a strong contamination pulse of hydrocarbons around plant roots may reorganize the soil's microbial trophic structure toward amoebae feeding on bacteria. We conducted a microcosm experiment to elucidate the effect of Medicago sativa on the trophic structure of naked amoebae after a strong pulse of pollution (50,000 ppm of fuel oil no. 6, which is a mixture of long chains ranging from C10 to C28). Plants were seeded 24 h after contamination and species of amoebae in the microcosms were identified at 1, 30, and 60 days after pollution. Several species from three trophic groups of naked amoeba were still alive 24 h after the hydrocarbon pulse. Non-planted microcosms harbored three trophic groups after 60 days, while planted ones nourished four groups. The bacterivore group was the most diverse in all microcosms, followed by protist-eaters and omnivores. The quantity of amoebae was significantly higher (3.4×103 organisms/g soil) in the planted pots than in the non-planted ones (1.3×103 organisms/g soil after 30 days of pollution (P ≤ 0.01). The shortest hydrocarbon chains (C10–C14) disappeared or diminished in all microcosms, and the longest ones increased in the planted ones. M. sativa thus exerted a positive effect on species richness, quantity, and the composition of amoebae trophic groups in contaminated soil. This indirect effect on bacterial predators is another key factor underlying hydrocarbon assimilation by living organisms during phytoremediation.

References

  1. 1.
    Coleman DC (1994) The microbial loop concept as used in terrestrial soil ecology studies. Microb Ecol 247:245–250. doi:10.1007/BF00166814 CrossRefGoogle Scholar
  2. 2.
    Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. doi:10.1007/s11104-009-0042-x CrossRefGoogle Scholar
  4. 4.
    Chanway CP, Turkington R, Holl FB (1991) Ecological implications of specificity between plants and rhizosphere micro-organisms. In: Begon M, Fitter AH, Macfadyen A (eds) Advances in ecological research. Academic Press, San Diego, pp 121–169Google Scholar
  5. 5.
    Duffy E, Cardinale BJ, France KE, Mclntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538. doi:10.1111/j.1461-0248.2007.01037.x CrossRefPubMedGoogle Scholar
  6. 6.
    Cowling AJ (1994) Protozoan distribution and adaptation. In: Darbyshire JF (ed) Soil protozoa. Cab International, London, pp 5–42Google Scholar
  7. 7.
    Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391. doi:10.1039/C2NP00075J PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Visvesvara GS, Schuster FL, Martinez AJ (1993) Balamuthia mandrillaris, N. G., N. Sp., Agent of amebic meningoencephalitis in humans and other animals. J Eukaryot Microbiol 40(4):504–514. doi:10.1111/j.1550-7408.1993.tb04943.x CrossRefPubMedGoogle Scholar
  9. 9.
    Schuster FL, Dunnebacke TH, Booton GC, Yagi S, Kohlmeier CK, Glaser C, Vugia D, Bakardjiev A, Azimi P, Maddux-Gonzalez M, Martinez AJ, Visvesvara GS (2003) Environmental isolation of Balamuthia mandrillaris associated with a case of amebic encephalitis. J Clin Microbiol 41(7):3175–3180. doi:10.1128/JCM.41.7.3175-3180.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162. doi:10.1034/j.1600-0706.2002.980116.x CrossRefGoogle Scholar
  11. 11.
    Pilon SE (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214 CrossRefGoogle Scholar
  12. 12.
    Ollivier B, Magot M (2005) Petroleum microbiology. ASM Press, USACrossRefGoogle Scholar
  13. 13.
    Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187. doi:10.1016/0038-0717(85)90113-0 CrossRefGoogle Scholar
  14. 14.
    Clarholm M (1989) Effects of plant–bacterial–amoebal interactions on plant uptake of nitrogen under field conditions. Biol Fertil Soils 8(4):373–378. doi:10.1007/BF00263171 CrossRefGoogle Scholar
  15. 15.
    Ingham RE, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986) Trophic interactions and nitrogen cycling in a semi-arid grassland. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J Appl Ecol 23:597–614. doi:10.2307/2404039 CrossRefGoogle Scholar
  16. 16.
    Ingham RE, Trofymow JA, Ames RN, Hunt HW, Morley CR, Moore JC, Coleman DC (1986) Trophic interactions and nitrogen cycling in a semi-arid grassland: II. System response to removal of different groups of soil microbes or fauna. J Appl Ecol 23:615–630. doi:10.2307/2404040 CrossRefGoogle Scholar
  17. 17.
    Bonkowski M (2004) Protist and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi:10.1111/j.1469-8137.2004.01066.x CrossRefGoogle Scholar
  18. 18.
    Gudin C (1970) Syratt WJ (1975) Biological aspects of land rehabilitation following hydrocarbon contamination. Environ Pollut 8(2):107–112. doi:10.1016/0013-9327(75)90020-8 CrossRefGoogle Scholar
  19. 19.
    Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178. doi:10.1007/BF02406163 Google Scholar
  20. 20.
    Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489. doi:10.1128/AEM.69.1.483-489.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Muratova A, Hübner T, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol Res 158:151–161. doi:10.1078/0944-5013-00187 CrossRefPubMedGoogle Scholar
  22. 22.
    Singh BN (1975) Pathogenic and non-pathogenic amoebae. Macmillan, UKCrossRefGoogle Scholar
  23. 23.
    Page FC (1976) An illustrated key to freshwater and soil amoebae. Freshwater biological Association, AmblesideGoogle Scholar
  24. 24.
    Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater biological Association, AmblesideGoogle Scholar
  25. 25.
    Page FC, Siemensma FJ (1991) Nackte rhizopoda and heliozoea. Gustab-Fisher Verlag, StuttgartGoogle Scholar
  26. 26.
    Patterson DJ (1996) Free-living freshwater protozoa. John Wiley & Sons, EnglandGoogle Scholar
  27. 27.
    Walker G, Simpson AGB, Edgcomb V, Sogin ML, Patterson DJ (2001) Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista). Eur J Protistol 37(1):25–49. doi:10.1078/0932-4739-00780 CrossRefGoogle Scholar
  28. 28.
    Smirnov AV, Brown S (2004) Guide to the methods of study and identification of soil gymnamoebae. Protistology 3(3):148–190Google Scholar
  29. 29.
    Shannon CE, Weaver W (1949) The mathematical theory of communication. University Illinois Press, UrbanaGoogle Scholar
  30. 30.
    Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0 CrossRefGoogle Scholar
  31. 31.
    Greenwood PE (1996) A guide to chi-squared testing. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 12:209–219. doi:10.1007/s00248-005-0205-0 CrossRefGoogle Scholar
  33. 33.
    Adl SM (2003) The ecology of soil decomposition. CABI Publishing, USACrossRefGoogle Scholar
  34. 34.
    Zarda B, Mattison G, Hess A, Hahn D, Hoëhener P, Zeyer J (1998) Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbiol Ecol 27:141–152. doi:10.1111/j.1574-6941.1998.tb00532.x CrossRefGoogle Scholar
  35. 35.
    Darbyshire JF (1994) Soil protozoa. CAB International, LondonGoogle Scholar
  36. 36.
    Rodriguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev Microbiol 3:225–241. doi:10.3109/10408419409114556 CrossRefGoogle Scholar
  37. 37.
    Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21–45Google Scholar
  38. 38.
    Brimecombe MJ, De Lelj FA, Lynch JM (2001) The effect of root exudates on rhizosphere. Microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 95–140Google Scholar
  39. 39.
    Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189. doi:10.1016/S0168-6496(99)00010-0 CrossRefGoogle Scholar
  40. 40.
    De Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. an opportunistic black yeast inhabiting environments rich in hydrocarbons. Anton Leeuw 90:257–268. doi:10.1007/s10482-006-9080-z CrossRefGoogle Scholar
  41. 41.
    Sinclair JL, Kampbell DH, Cook ML, Wilson JT (1993) Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Appl Environ Microbiol 59:467–472PubMedCentralPubMedGoogle Scholar
  42. 42.
    Raynaud X (2010) Soil properties are key determinants for the development of exudates gradients in a rhizosphere simulation model. Soil Biol Biochem 42:210–219. doi:10.1016/j.soilbio.2009.10.019 CrossRefGoogle Scholar
  43. 43.
    De Jonckheere JF, van de Voorde H (1976) Differences in destruction of cysts of pathogenic and on pathogenic Naegleria and Acanthamoeba by chlorine. Appl Environ Microbiol 31:294–297, PMCID: PMC169762PubMedCentralPubMedGoogle Scholar
  44. 44.
    De Jonckheere JF (1991) Ecology of Acanthamoeba. RID 5:385–387. doi:10.1093/clind/13.Supplement_5.S385 Google Scholar
  45. 45.
    Martinez AJ (1985) Free-living amebas: natural history, prevention, diagnosis, pathology and treatment of disease. CRC Press, Boca RatonGoogle Scholar
  46. 46.
    Bamforth SS, Wal HD, Virginia RA (2005) Distribution and diversity of soil protozoa in the McMurdo dry valleys of Antarctica. Polar Biol 28:756–762. doi:10.1007/s00300-005-0006-4 CrossRefGoogle Scholar
  47. 47.
    Lara E, Berney C, Ekelund F, Harms H, Chatzino A (2007) Molecular comparison of cultivable protozoa from a pristine and a polycyclic aromatic hydrocarbon polluted site. Soil Biol Biochem 39:139–148. doi:10.1016/j.soilbio.2006.06.017 CrossRefGoogle Scholar
  48. 48.
    Cann JP (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida). J Protozool 3:392–396. doi:10.1111/j.1550-7408.1986.tb05629.x CrossRefGoogle Scholar
  49. 49.
    Rodriguez Zaragoza S, Mayzlish E, Steinberger Y (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol 49:134–141. doi:10.1007/s00248-003-1056-1 CrossRefPubMedGoogle Scholar
  50. 50.
    Heipieper H, Martínez P (2010) Toxicity of hydrocarbons to microorganisms. In: Timmis K. (Ed.) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin. doi: 10.1007/SpringerReference_168106 2011-01-31 23:00:00 UTC
  51. 51.
    Pratt RJ, Cairns J Jr (1985) Functional groups in the protozoa: roles in differing ecosystems. J Protozool 3:415–423. doi:10.1111/j.1550-7408.1985.tb04037.x CrossRefGoogle Scholar
  52. 52.
    Page FC (1967) Taxonomic criteria for limax smoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J Eukaryot Microbiol 14:499–521. doi:10.1111/j.1550-7408.1967.tb02036.x Google Scholar
  53. 53.
    Chang SL (1958) Cultural, cytological and ecological observations on the amoeba stage of Naegleria gruberi. J Gen Microbiol 18:565–578. doi:10.1099/00221287-18-3-565 CrossRefPubMedGoogle Scholar
  54. 54.
    Danso SKA, Alexander M (1975) Regulation of predation by prey density: the protozoan–Rhizobium relationship. Appl Microbiol 4:515–521, PMCID: PMC187017Google Scholar
  55. 55.
    De Jonckheere JF, Dive DG, Pussard M, Vickerman K (1984) Willaertia magna gen. nov., sp. nov. (Vahlkampfiidae). A thermophilic amoeba found in different habitats. Protistologica 20:5–13Google Scholar
  56. 56.
    Page FC (1975) A new family of amoebae with fine pseudopodia. Zool J Linnean Soc 56:73–89. doi:10.1111/j.1096-3642.1975.tb00811.x CrossRefGoogle Scholar
  57. 57.
    Dillon A, Parry JD (2009) Amoebic grazing of freshwater Synechococcus strains rich in phycocyanin. FEMS Microbiol Ecol 69:106–112. doi:10.1111/j.1574-6941.2009.00690.x CrossRefPubMedGoogle Scholar
  58. 58.
    Pickup ZL, Pickup R, Parry JD (2007) A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella vermiformis in the presence of suspended and attached Escherichia coli K12. FEMS Microbiol Ecol 59:556–563. doi:10.1111/j.1574-6941.2006.00224.x CrossRefPubMedGoogle Scholar
  59. 59.
    Ray DL (1951) Agglutination of bacteria: a feeding method in the soil ameba Hartmanella sp. J Exp Zool 118:443–465. doi:10.1002/jez.1401180306 CrossRefGoogle Scholar
  60. 60.
    Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16(2):273–307. doi:10.1128/CMR.16.2.273-307.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Daggett PM, Sawyer TK, Nerad TA (1982) Distribution and possible interrelationships of pathogenic and nonpathogenic Acanthamoeba from aquatic environments. Microb Ecol 8(4):371–386. doi:10.1007/BF02010676 CrossRefPubMedGoogle Scholar
  62. 62.
    Lloyd D, Harris JC, Biagini GA, HughesMR MS, Bernard C, Wadley RB, Edwards MR (2004) The plasma membrane of microaerophilic protists: oxidative and nitrosative stress. Microbiology 150:1183–1190. doi:10.1099/mic.0.26834-0 CrossRefPubMedGoogle Scholar
  63. 63.
    Peglar MT, Amaral ZLA, Anderson OR, Nerad TA, Gillevet PM, Mullen TE, Frasca JRS, Silberman JD, O'kelly CJ, Sogin ML (2003) Two new small subunit ribosomal RNA gene lineages within the subclass Gymnamoebia. J Eukaryot Microbiol 50:224–232. doi:10.1111/j.1550-7408.2003.tb00122.x CrossRefPubMedGoogle Scholar
  64. 64.
    Bovee EC & SawyerTK (1979) Marine flora and fauna of the northeastern United States: Protozoa, Sarcodina, Amoebae. [Washington]: Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service: for sale by the Supt of Docs US Govt Print Off.Google Scholar
  65. 65.
    Bovee EC (1961) A small ameba of freshwater lakes and ponds, Mayorella cultura n. sp. Trans Am Microsc Soc 1:54–62. doi:10.2307/3223706 CrossRefGoogle Scholar
  66. 66.
    Page FC (1969) Mitosis and pseudopod formation in Vexillifera bacillipedes n. sp., a mayorellid amoeba. Trans Am Microsc Soc 88(3):394–400. doi:10.2307/3224707 CrossRefPubMedGoogle Scholar
  67. 67.
    Zubkov MV, Sleigh MA (1999) Growth of amoebae and flagellates on bacteria deposited on filters. Microb Ecol 37:107–115. doi:10.1007/s002489900135 CrossRefPubMedGoogle Scholar
  68. 68.
    Barbeau J, Buhler T (2001) Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 152:753–760. doi:10.1016/S0923-2508(01)01256-6 CrossRefPubMedGoogle Scholar
  69. 69.
    Walker G, Dacks JB, Embley M (2006) Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as "Mastigamoeba invertens". J Eukaryot Microbiol 53:65–78. doi:10.1111/j.1550-7408.2005.00087.x CrossRefPubMedGoogle Scholar
  70. 70.
    Myl'nikov AP, Karpov SA (2004) Review of diversity and taxonomy of cercomonads. Protistology 3(4):201–217Google Scholar
  71. 71.
    Chavez LA, Balamuth W, Gong T (1986) A light and electron microscopical study of a new, polymorphic free-living amoeba, Phreatamoeba balamuthi n. g., n. sp. J Protozool 3:397–404. doi:10.1111/j.1550-7408.1986.tb05630.x CrossRefGoogle Scholar
  72. 72.
    Bovee EC (1956) Some observations on the morphology and activities of a new ameba from citrus wastes, Flamella citrensis n.sp. J Eukaryot Microbiol 3:151–155. doi:10.1111/j.1550-7408.1956.tb02450.x Google Scholar
  73. 73.
    Pussard M, Pons R (1976) Etude des genres Leptomyxa et Gephyramoeba (Protozoa, Sarcodina): 1. Leptomyxa reticulata Goodey, 1915. Protistologica 12:151–168Google Scholar
  74. 74.
    Old KM, Darbyshire JF (1978) Soil fungi as food for giant amoebae. Soil Biol Biochem 2:93–100. doi:10.1016/0038-0717(78)90077-9 CrossRefGoogle Scholar
  75. 75.
    Jeroen Van Wichelen J, van Gremberghe J, Vanormelingen P, Debeer AE, Leporcq B, Menzel D, Codd GA, Descy JP, Vyverman W (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ Microbiol 10:2797–2813. doi:10.1111/j.1462-2920.2010.02249.x Google Scholar
  76. 76.
    Cash J, Wailes HG (1919) The British freshwater Rhizopoda and Helizoa. The Ray Society. Vol 4. No. 103. Johnson Reprint Corporation, New YorkGoogle Scholar
  77. 77.
    Anderson OR, Hoeffler WK (1979) Fine structure of a marine proteomyxid and cytochemical changes during encystment. J Ultrastruct Res 66:276–287. doi:10.1016/S0022-5320(79)90124-2 CrossRefPubMedGoogle Scholar
  78. 78.
    Wrights JL, Redhead K, Maudsley H (1981) Acanthamoeba castellanii, a predator of Cyanobacteria. J Gen Microbiol 125:293–300. doi:10.1099/00221287-125-2-293 Google Scholar
  79. 79.
    Nero LC, Tarver MG, Hedrick LR (1964) Growth of Acanthamoeba castellani with the yeast Torulopsis famata. J Bacteriol 87:220–225PubMedCentralPubMedGoogle Scholar
  80. 80.
    De Jonckheere JF (1980) Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl Environ Microbiol 39(4):681–685PubMedCentralPubMedGoogle Scholar
  81. 81.
    Old KM (1978) Perforation and lysis of fungal spores by soil amoebae. Ann Appl Biol 89:128–131. doi:10.1111/j.1744-7348.1978.tb02587.x CrossRefGoogle Scholar
  82. 82.
    Old KM, Darbyshire JF (1980) Arachnula impatiens Cienk., a mycophagous giant amoeba from soil. Protistologica 16:277–287Google Scholar
  83. 83.
    Chakraborty S, Old KM (1986) Ultrastructure and description of a fungus-feeding amoeba, Trichamoeba mycophaga n.sp. (Amoebidea, Amoebae), from Australia. J Eukaryot Microbiol 33:564–569. doi:10.1111/j.1550-7408.1986.tb05663.x Google Scholar
  84. 84.
    Pussard M, Alabouvette C, Pons R (1979) Etude preliminare d'une amibe mycophage Thecamoeba granifera s. sp. Minor (Thecamoebidae, Amoebida). Protistologica 16:443–451Google Scholar
  85. 85.
    West GS (1903) Observations on freshwater rhizopods, with some remarks on their classification. J Linn Soc Lond Zool 29:108–117. doi:10.1111/j.1096-3642.1903.tb00429.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sandra Cortés-Pérez
    • 1
  • Salvador Rodríguez-Zaragoza
    • 1
  • Ma. Remedios Mendoza-López
    • 2
  1. 1.Laboratorio de MicrobiologíaUBIPRO, Fes-Iztacala UNAMMéxicoMexico
  2. 2.Unidad de Servicios de Apoyo en Resolución Analítica (SARA)Universidad VeracruzanaXalapaMexico

Personalised recommendations