Microbial Ecology

, Volume 68, Issue 1, pp 1–12 | Cite as

Pseudomonas aeruginosa Biofilms in Disease

  • Lawrence R. Mulcahy
  • Vincent M. Isabella
  • Kim LewisEmail author


Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804–1813, 2010; Breathnach et al., J Hosp Infect 82:19–24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255–264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78–81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439–440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections.


Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Cystic Fibrosis Patient Rhamnolipids Cystic Fibrosis Lung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Institutes of Health grant T-R01AI085585-01 and by Army Research Office grants W9911NF-09-1-0265 and 55631-LS-RIP.


  1. 1.
    Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362(19):1804–1813. doi: 10.1056/NEJMra0904124 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD (2012) Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. The Journal of hospital infection 82(1):19–24. doi: 10.1016/j.jhin.2012.06.007 PubMedCrossRefGoogle Scholar
  3. 3.
    Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3(2):255–264PubMedGoogle Scholar
  4. 4.
    Vahdani M, Azimi L, Asghari B, Bazmi F, Rastegar Lari A (2012) Phenotypic screening of extended-spectrum ss-lactamase and metallo-ss-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Annals of burns and fire disasters 25(2):78–81PubMedCentralPubMedGoogle Scholar
  5. 5.
    Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485(7399):439–440. doi: 10.1038/485439a PubMedCrossRefGoogle Scholar
  6. 6.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. The Journal of clinical investigation 112(10):1466–1477PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gristina AG, Costerton JW (1985) Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. The Journal of bone and joint surgery American volume 67(2):264–273PubMedGoogle Scholar
  8. 8.
    Cross A, Allen JR, Burke J, Ducel G, Harris A, John J, Johnson D, Lew M, MacMillan B, Meers P et al (1983) Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Reviews of infectious diseases 5(Suppl 5):S837–S845PubMedCrossRefGoogle Scholar
  9. 9.
    Peters G, Locci R, Pulverer G (1981) Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg [B] 173(5):293–299Google Scholar
  10. 10.
    Ganderton L, Chawla J, Winters C, Wimpenny J, Stickler D (1992) Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11(9):789–796PubMedCrossRefGoogle Scholar
  11. 11.
    Raad I, Hanna H (1999) Intravascular catheters impregnated with antimicrobial agents: a milestone in the prevention of bloodstream infections [see comments]. Support Care Cancer 7(6):386–390PubMedCrossRefGoogle Scholar
  12. 12.
    Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25(10):1072–1076PubMedCrossRefGoogle Scholar
  13. 13.
    Vandecandelaere I, Matthijs N, Van Nieuwerburgh F, Deforce D, Vosters P, De Bus L, Nelis HJ, Depuydt P, Coenye T (2012) Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS One 7(6):e38401. doi: 10.1371/journal.pone.0038401 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Frank DN, Wilson SS, St Amand AL, Pace NR (2009) Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One 4(11):e7811. doi: 10.1371/journal.pone.0007811 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951PubMedCrossRefGoogle Scholar
  16. 16.
    Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG (2008) A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105(39):15070–15075. doi: 10.1073/pnas.0804326105 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sibley CD, Parkins MD, Rabin HR, Surette MG (2009) The relevance of the polymicrobial nature of airway infection in the acute and chronic management of patients with cystic fibrosis. Curr Opin Investig Drugs 10(8):787–794PubMedGoogle Scholar
  18. 18.
    Sibley CD, Grinwis ME, Field TR, Eshaghurshan CS, Faria MM, Dowd SE, Parkins MD, Rabin HR, Surette MG (2011) Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 6(7):e22702. doi: 10.1371/journal.pone.0022702 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7(4):e36313. doi: 10.1371/journal.pone.0036313 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory S, Brodie EL, Lynch SV, Bohannan BJ, Green JL, Maurer BA, Kolter R (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303. doi: 10.1111/j.1462-2920.2010.02173.x PubMedCrossRefGoogle Scholar
  21. 21.
    Rose LM, Neale R (2010) Development of the first inhaled antibiotic for the treatment of cystic fibrosis. Science translational medicine 2(63):63mr64. doi: 10.1126/scitranslmed.3001634 CrossRefGoogle Scholar
  22. 22.
    Hurley MN, Ariff AH, Bertenshaw C, Bhatt J, Smyth AR (2012) Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. Journal of cystic fibrosis 11(4):288–292. doi: 10.1016/j.jcf.2012.02.006 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764. doi: 10.1038/35037627 PubMedCrossRefGoogle Scholar
  24. 24.
    Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric pulmonology 44(6):547–558. doi: 10.1002/ppul.21011 PubMedCrossRefGoogle Scholar
  25. 25.
    No authors (1999) Consensus Development Conference on Diabetic Foot Wound Care: 7–8 April 1999, Boston, Massachusetts. American Diabetes Association. Diabetes care 22 (8):1354–1360Google Scholar
  26. 26.
    James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound repair and regeneration 16(1):37–44. doi: 10.1111/j.1524-475X.2007.00321.x PubMedCrossRefGoogle Scholar
  27. 27.
    Fazli M, Bjarnsholt T, Kirketerp-Moller K, Jorgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089. doi: 10.1128/JCM.01395-09 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Burmolle M, Thomsen TR, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B, Tolker-Nielsen T, Givskov M, Moser C, Kirketerp-Moller K, Johansen HK, Hoiby N, Jensen PO, Sorensen SJ, Bjarnsholt T (2010) Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS immunology and medical microbiology 59(3):324–336. doi: 10.1111/j.1574-695X.2010.00714.x PubMedGoogle Scholar
  29. 29.
    Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7):1818–1824PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hoyle BD, Alcantara J, Costerton JW (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 36(9):2054–2056PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nichols WW, Evans MJ, Slack MP, Walmsley HL (1989) The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135(5):1291–1303PubMedGoogle Scholar
  32. 32.
    Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209. doi: 10.1128/AAC.00471-08 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522PubMedCentralPubMedGoogle Scholar
  34. 34.
    Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-1,2,4-triazole. Biotechnol Bioeng 60(1):135. doi: 10.1002/(SICI)1097-0290(19981005)60:1<135::AID-BIT15>3.0.CO;2-P PubMedCrossRefGoogle Scholar
  35. 35.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13(1):34–40. doi: 10.1016/j.tim.2004.11.010 PubMedCrossRefGoogle Scholar
  36. 36.
    Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41(6):1352–1358PubMedCentralPubMedGoogle Scholar
  37. 37.
    Stone G, Wood P, Dixon L, Keyhan M, Matin A (2002) Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob Agents Chemother 46(8):2458–2461PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47(4):1251–1256PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Hoiby N (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339(6124):1213–1216. doi: 10.1126/science.1232688 PubMedCrossRefGoogle Scholar
  42. 42.
    Purdy Drew KR, Sanders LK, Culumber ZW, Zribi O, Wong GC (2009) Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. J Am Chem Soc 131(2):486–493. doi: 10.1021/ja803925n PubMedCrossRefGoogle Scholar
  43. 43.
    Chiang WC, Nilsson M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(5):2352–2361. doi: 10.1128/AAC.00001-13 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    deBeer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnology and Bioengineering 53(2):151–158. doi: 10.1002/(Sici)1097-0290(19970120)53:2<151::Aid-Bit4>3.0.Co;2-N CrossRefGoogle Scholar
  45. 45.
    Thurnheer T, Gmur R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 69(3):1702–1709PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Takenaka S, Pitts B, Trivedi HM, Stewart PS (2009) Diffusion of macromolecules in model oral biofilms. Appl Environ Microbiol 75(6):1750–1753. doi: 10.1128/AEM.02279-08 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Moser C, Kjaergaard S, Pressler T, Kharazmi A, Koch C, Hoiby N (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. Apmis 108(5):329–335. doi: 10.1034/j.1600-0463.2000.d01-64.x PubMedCrossRefGoogle Scholar
  48. 48.
    Hartl D, Griese M, Kappler M, Zissel G, Reinhardt D, Rebhan C, Schendel DJ, Krauss-Etschmann S (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. J Allergy Clin Immunol 117(1):204–211. doi: 10.1016/j.jaci.2005.09.023 PubMedCrossRefGoogle Scholar
  49. 49.
    Moss RB, Hsu YP, Olds L (2000) Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 120(3):518–525PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Moser C, Johansen HK, Song Z, Hougen HP, Rygaard J, Hoiby N (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. Apmis 105(11):838–842PubMedCrossRefGoogle Scholar
  51. 51.
    Moser C, Hougen HP, Song Z, Rygaard J, Kharazmi A, Hoiby N (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. Apmis 107(12):1093–1100PubMedCrossRefGoogle Scholar
  52. 52.
    Johansen HK, Hougen HP, Rygaard J, Hoiby N (1996) Interferon-gamma (IFN-gamma) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats. Clin Exp Immunol 103(2):212–218PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349. doi: 10.1056/NEJM200005043421806 PubMedCrossRefGoogle Scholar
  54. 54.
    Schnyder-Candrian S, Strieter RM, Kunkel SL, Walz A (1995) Interferon-alpha and interferon-gamma down-regulate the production of interleukin-8 and ENA-78 in human monocytes. J Leukoc Biol 57(6):929–935PubMedGoogle Scholar
  55. 55.
    Jensen PO, Moser C, Kobayashi O, Hougen HP, Kharazmi A, Hoiby N (2004) Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection. Clin Exp Immunol 137(3):478–485. doi: 10.1111/j.1365-2249.2004.02554.xCEI2554 PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155(Pt 11):3500–3508. doi: 10.1099/mic.0.031443-0 PubMedCrossRefGoogle Scholar
  57. 57.
    Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1329–1338. doi: 10.1099/mic.0.2006/003863-0 PubMedCrossRefGoogle Scholar
  58. 58.
    Jensen PO, Givskov M, Bjarnsholt T, Moser C (2010) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59(3):292–305. doi: 10.1111/j.1574-695X.2010.00706.x PubMedGoogle Scholar
  59. 59.
    Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7518PubMedCrossRefGoogle Scholar
  60. 60.
    Wood LF, Ohman DE (2012) Identification of genes in the sigma(2)(2) regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. MBio 3 (3). doi: 10.1128/mBio.00094-12
  61. 61.
    Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PO, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, Tolker-Nielsen T, Pier GB, Hoiby N, Givskov M, Bjarnsholt T (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. Apmis 117(7):537–546. doi: 10.1111/j.1600-0463.2009.02466.x PubMedCrossRefGoogle Scholar
  62. 62.
    van Gennip M, Christensen LD, Alhede M, Qvortrup K, Jensen PO, Hoiby N, Givskov M, Bjarnsholt T (2012) Interactions between polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilms on silicone implants in vivo. Infect Immun 80(8):2601–2607. doi: 10.1128/Iai.06215-11 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Kharazmi A (1991) Mechanisms involved in the evasion of the host defense by Pseudomonas aeruginosa. Immunol Lett 30(2):201–206. doi: 10.1016/0165-2478(91)90026-7 PubMedCrossRefGoogle Scholar
  64. 64.
    Wagner VE, Li LL, Isabella VM, Iglewski BH (2007) Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Analytical and Bioanalytical Chemistry 387(2):469–479. doi: 10.1007/s00216-006-0964-6 PubMedCrossRefGoogle Scholar
  65. 65.
    Pier GB, Coleman F, Grout M, Franklin M, Ohman DE (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69(3):1895–1901. doi: 10.1128/Iai.69.3.1895-1901.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lewenza S (2013) Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 4:21. doi: 10.3389/fmicb.2013.00021 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Moskowitz SM, Ernst RK (2010) The role of Pseudomonas lipopolysaccharide in cystic fibrosis airway infection. Subcell Biochem 53:241–253. doi: 10.1007/978-90-481-9078-2_11 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146(Pt 3):547–549PubMedCrossRefGoogle Scholar
  69. 69.
    Evans DJ, Brown MR, Allison DG, Gilbert P (1990) Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle. J Antimicrob Chemother 25(4):585–591PubMedCrossRefGoogle Scholar
  70. 70.
    Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(Pt 5):1297–1304PubMedGoogle Scholar
  71. 71.
    Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34(10):1865–1868PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 2nd edn. CLSI document M27-A2. NCCLS, WayneGoogle Scholar
  73. 73.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776PubMedCentralPubMedGoogle Scholar
  74. 74.
    Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. doi: 10.1146/annurev.micro.112408.134306 PubMedCrossRefGoogle Scholar
  75. 75.
    Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42(5):1915–1922PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Moskowitz SM, Emerson JC, McNamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL (2011) Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatric pulmonology 46(2):184–192. doi: 10.1002/ppul.21350 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of bacteriology 183(23):6746–6751. doi: 10.1128/JB.183.23.6746-6751.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Palmer RJ Jr, Stoodley P (2007) Biofilms 2007: broadened horizons and new emphases. J Bacteriol 189(22):7948–7960PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Current topics in microbiology and immunology 322:107–131PubMedGoogle Scholar
  80. 80.
    Percival SL, Hill KE, Malic S, Thomas DW, Williams DW (2011) Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair Regen 19(1):1–9. doi: 10.1111/j.1524-475X.2010.00651.x PubMedCrossRefGoogle Scholar
  81. 81.
    Simoes LC, Lemos M, Pereira AM, Abreu AC, Saavedra MJ, Simoes M (2011) Persister cells in a biofilm treated with a biocide. Biofouling 27(4):403–411. doi: 10.1080/08927014.2011.579599 PubMedCrossRefGoogle Scholar
  82. 82.
    Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986. doi: 10.1126/science.1211037 PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppee JY, Ghigo JM, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS genetics 9(1):e1003144. doi: 10.1371/journal.pgen.1003144 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS biology 8(2):e1000317. doi: 10.1371/journal.pbio.1000317 PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339(6124):1210–1213. doi: 10.1126/science.1232751 PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426. doi: 10.1016/j.tim.2011.04.005 PubMedCrossRefGoogle Scholar
  87. 87.
    Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836. doi: 10.1128/JB.00765-12 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol. doi: 10.1128/JB.00318-13 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Brooun A, Liu S, Lewis K (2000) A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210PubMedCrossRefGoogle Scholar
  91. 91.
    Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106(51):21866–21871. doi: 10.1073/pnas.pnas.0910308106 PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182(2):425–431PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Linares JF, Moreno R, Fajardo A, Martinez-Solano L, Escalante R, Rojo F, Martinez JL (2010) The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12(12):3196–3212. doi: 10.1111/j.1462-2920.2010.02292.x PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang L, Chiang WC, Gao Q, Givskov M, Tolker-Nielsen T, Yang L, Zhang G (2012) The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiology 158(Pt 12):3014–3019. doi: 10.1099/mic.0.061192-0 PubMedCrossRefGoogle Scholar
  95. 95.
    Amini S, Hottes AK, Smith LE, Tavazoie S (2011) Fitness landscape of antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS pathogens 7(10):e1002298. doi: 10.1371/journal.ppat.1002298 PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A (2008) Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190(24):7910–7917. doi: 10.1128/JB.01147-08 PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103(22):8487–8492. doi: 10.1073/pnas.0602138103 PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of bacteriology 192(23):6191–6199. doi: 10.1128/JB.01651-09 PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    De Groote VN, Verstraeten N, Fauvart M, Kint CI, Verbeeck AM, Beullens S, Cornelis P, Michiels J (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS microbiology letters 297(1):73–79. doi: 10.1111/j.1574-6968.2009.01657.x PubMedCrossRefGoogle Scholar
  100. 100.
    Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. Journal of bacteriology 192(7):1946–1955. doi: 10.1128/JB.01231-09 PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    De Groote VN, Fauvart M, Kint CI, Verstraeten N, Jans A, Cornelis P, Michiels J (2011) Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J Med Microbiol 60(Pt 3):329–336. doi: 10.1099/jmm.0.019703-0 PubMedCrossRefGoogle Scholar
  102. 102.
    Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America 108(32):13206–13211. doi: 10.1073/pnas.1100186108 PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Watters C, DeLeon K, Trivedi U, Griswold JA, Lyte M, Hampel KJ, Wargo MJ, Rumbaugh KP (2013) Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Medical microbiology and immunology 202(2):131–141. doi: 10.1007/s00430-012-0277-7 PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA (2011) Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound repair and regeneration 19(3):400–410. doi: 10.1111/j.1524-475X.2011.00690.x PubMedCrossRefGoogle Scholar
  105. 105.
    Seth AK, Geringer MR, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2012) Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit-ear model. Journal of the American College of Surgeons 215(3):388–399. doi: 10.1016/j.jamcollsurg.2012.05.028 PubMedCrossRefGoogle Scholar
  106. 106.
    Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841. doi: 10.1126/science.1163600 PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Pezzulo AA, Tang XX, Hoegger MJ, Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113. doi: 10.1038/nature11130 PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49(1):1–45. doi: 10.1086/599376 PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Chauhan A, Lebeaux D, Ghigo JM, Beloin C (2012) Full and broad-spectrum in vivo eradication of catheter-associated biofilms using gentamicin-EDTA antibiotic lock therapy. Antimicrob Agents Chemother 56(12):6310–6318. doi: 10.1128/AAC.01606-12 PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Wolcott RD, Kennedy JP, Dowd SE (2009) Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. Journal of wound care 18(2):54–56PubMedCrossRefGoogle Scholar
  111. 111.
    Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE (2010) Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. Journal of wound care 19(8):320–328PubMedCrossRefGoogle Scholar
  112. 112.
    Dowd SE, Wolcott RD, Kennedy J, Jones C, Cox SB (2011) Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. Journal of wound Care 20(5):232, 234–239PubMedCrossRefGoogle Scholar
  113. 113.
    Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56PubMedCrossRefGoogle Scholar
  114. 114.
    Hoffman LR, Ramsey BW (2013) Cystic fibrosis therapeutics: the road ahead. Chest 143(1):207–213. doi: 10.1378/chest.12-1639 PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. The Journal of clinical investigation 117(4):877–888. doi: 10.1172/JCI30783 PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Miller C, McMullin B, Ghaffari A, Stenzler A, Pick N, Roscoe D, Ghahary A, Road J, Av-Gay Y (2009) Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric oxide: biology and chemistry 20(1):16–23. doi: 10.1016/j.niox.2008.08.002 CrossRefGoogle Scholar
  117. 117.
    Miller C, Miller M, McMullin B, Regev G, Serghides L, Kain K, Road J, Av-Gay Y (2012) A phase I clinical study of inhaled nitric oxide in healthy adults. Journal of cystic fibrosis 11(4):324–331. doi: 10.1016/j.jcf.2012.01.003 PubMedCrossRefGoogle Scholar
  118. 118.
    Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, Mainz JG, Rodriguez S, Li H, Yen K, Ordonez C, Ahrens R (2013) Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. doi: 10.1164/rccm.201301-0153OC Google Scholar
  119. 119.
    Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol. doi: 10.1038/nchembio.1253 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lawrence R. Mulcahy
    • 1
    • 2
  • Vincent M. Isabella
    • 1
  • Kim Lewis
    • 1
    Email author
  1. 1.Antimicrobial Discovery Center, Department of BiologyNortheastern UniversityBostonUSA
  2. 2.IonOptix, LLCMiltonUSA

Personalised recommendations